Business Cycle Synchronization between the CEE Countries and the Eurozone

Author: Kubinschi Matei Supervised by: Professor Moisă Altăr

Doctoral School of Finance and Banking

July, 2013

Overview

Motivation

2 Dataset

- Classical Approach via filtering
- Wavelet Approach
- 5 Conclusions
- 6 Bibliography

< 回 > < 三 > < 三 >

Economic Foundation

Theoretical background of **Optimal Currency Areas (OCA)**, Mundell (1961):

- The Euro Area can produce more benefits than costs if a high degree of synchronization with the Euro Zone is previously achieved
- Rogoff (1985) and Clarida et al. (1999): the Central Bank will respond more successfully to aggregate shocks and implement its policy with greater efficiency, if the union's members have less volatile and more synchronized business cycles ⇒ lower probability of asymmetric shocks.

イロト イポト イヨト イヨト

Dataset (1)

Period covered: 2000Q1-2012Q4

11 Countries from the CEE group:

- 8 *First Wave* (2004) Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Slovenia and Hungary
- 2 Second Wave (2007) Romania and Bulgaria
- Croatia expected to join the EU in 2013
- Eurozone Aggregate indicator EU-15 (over 90% of the EU GDP)

Indicator: Constant Price GDP and ESI, from the Eurostat Database

Part I - Classical Methodology

Univariate filtering techniques

- Quadratic Trend (QT) Filter
- Beveridge-Nelson (BN) Decomposition
- Hodrick-Prescott (HP) Filter
- Band-Pass (BP) Filter
- Unobserved Components (UC) Model

/□ ▶ 《 ⋽ ▶ 《 ⋽

Aggregating the results

Darvas, Vadas (2005) Consensus Measure

$$\mathsf{K}_{t}^{(m)} = \frac{1}{l_{t}} \sum_{s=k+1}^{T} \left| \left(q_{t} - q_{t,s}^{(m)} \right) - \left(q_{t} - q_{t,s-1}^{(m)} \right) \right| \tag{1}$$

Using the weights:

$$\omega_m = \frac{1/K^{(m)}}{\sum_{i=1}^{p} 1/K^{(i)}}$$
(2)

(日) (同) (三) (三)

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

Results obtained from the fitering techniques

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

July, 2013 7 / 39

Combined Business Cycles 2000-2012

July, 2013 8 / 39

Correlations between CEE countries and the Euro zone 2000-2012

	CRO	CZE	EST	HUN	LIT	POL	ROM	SVK	SLO	BUL	LAT
Cons I	77.1	87.2	87.8	86.1	83.4	63.3	64.1	78.7	91.2	68.9	83.1
Cons II	77.4	84.8	88.8	85.6	84.6	63.5	67.5	79	91	72.7	84.5
Cons III	75.4	83.9	88	84.5	83.6	62.5	67.5	78.1	89.4	72.8	82.7

The Highest Correlated Countries are:

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

July, 2013 9 / 39

Correlations between CEE countries and the Eurozone

Additional Indicators

Concordance Index - Harding, Pagan (2002)

$$\mathsf{IC}_{i,EA} = T^{-1} \left\{ \sum_{t=1}^{T} \left(S_{i,t} S_{EA,t} \right) + (1 - S_{i,t}) \left(1 - S_{i,t} \right) \right\}$$
(3)

where S_i is a binary variable, 1 for positive output gap, 0 for negative.

Lead/Lag Correlations

Two economies are synchronized if the maximum correlation occurs *contemporaneously*

Additional Indicators

	CRO	CZE	EST	HUN	LIT	POL	ROM	SVK	SLO	BUL	LAT
CI	0.69	0.83	0.77	0.69	0.75	0.77	0.75	0.75	0.81	0.77	0.77
Lead/Lag	-1	0	0	0	-1	0	-2	-1	0	-2	-1

• According to CI, all countries are *in the same phase* as the Eurozone

• Lead/Lag correlations show that **Romania** and **Bulgaria** are lagging behind the Eurozone, by **two quarters**

- 4 同 6 4 日 6 4 日 6

Cluster Analysis

• Hierachical Tree Clustering -

countries are more related to nearby countries than to those farther away.

• Define the distance between two clusters as the **average distance**:

$$d(r,s) = \frac{1}{n_r n_s} \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} dist(x_{ri}, x_{sj})$$

• Distance measure - Pearson's correlation

- 4 同 6 4 日 6 4 日 6

July, 2013 13 / 39

Multidimensional Scaling Map

Figure: Distance Map for the CEE countries

Two significant groups:

- Eurozone: Hungary, Slovenia and the Baltic States
- **CEE**: Romania and Bulgaria joined by Slovakia and Croatia

The Czech Republic can be included in both clusters Poland is the most dissimilar country in the dataset

Motivation

- Economic developments are the results of the actions of several agents, who have different term objectives \implies Economic time series are an aggregation of components, functioning at *different frequencies*
- Wavelets determine the underlying forces in the time series, over a range of different time horizons, can reveal remarkable insights into cycles, at different time scales.
- are capable to handle non-stationary data or structural breaks that appear in some time series

- 4 同 6 4 日 6 4 日 6

What are Wavelets?

A wavelet is a wave-like oscillation with an amplitude that increases and then decreases back to zero. Mathematically, it has to fulfill the condition:

$$\int_{-\infty}^{\infty} \psi(t) dt = 0$$
(4)

Starting with a mother wavelet, we can construct a family of "daughter wavelets" by a simple process of *scaling* and *translating*:

$$\psi_{s,u}(t) = \frac{1}{\sqrt{|s|}} \psi\left(\frac{t-u}{s}\right) \tag{5}$$

(日) (周) (三) (三)

Discrete Wavelet Transform

The discrete version of the wavelet function is:

$$\psi_{m,n} = a^{-\frac{m}{2}}\psi\left(a^{-m}t - nb\right) \tag{6}$$

Define the Discrete Wavelet Transform of a function x(t) as:

$$W_{m,n}(x) = a^{-\frac{m}{2}} \int_{-\infty}^{\infty} x(t) \psi(a^{-m}t - nb) dt$$
(7)

Basic Idea: Convolve the series with a wavelet function and compute the coefficients

(日) (同) (三) (三)

Multiresolution Analysis

The main tool used in wavelet theory - decomposes a signal into its constituent multiresolution components, allowing the separate analysis of these sub-processes (Mallat and Meyer):

$$x(t) = \sum_{k} s_{J,k} \phi_{J,k}(t) + \sum_{k} d_{J,k} \psi_{J,k}(t) + \dots + \sum_{k} d_{1,k} \psi_{1,k}(t)$$
(8)

where $s_{J,k}$ are the approximation coefficients and $d_{J,k}$, the detail coefficients.

(日) (周) (三) (三)

Mallat's Pyramid Algorithm

This approach is equivalent to Subband Filtering Schemes, used in electrical engineering

3 ×

Daubechies Family of Wavelets

Figure: Scalling and Wavelet Functions (ablove) The Four Filters associated with the db4 wavelet (below)

July, 2013 20 / 39

. ⊒ →

• • • • • • • • • • • •

Figure: MRA results for Romania

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

▲ ■ ► ■ つへで July, 2013 21 / 39

Figure: MRA results for Romania

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

▲ ■ ▶ ■ つへへ July, 2013 22 / 39

Figure: MRA results for Romania

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

July, 2013 23 / 39

E 990

Results

The correlations between the business cycles, obtained using the Multiresolution Analysis:

	BUL	CZE	EST	LAT	LIT	HUN	POL	ROM	SLO	SVK	CRO
00-12	83.9	91.9	91.5	89.4	92.7	85	79.9	82.6	96.3	92.2	85.6
00-06	77.5	85.5	89.8	73.8	87.5	64.9	61.7	58.2	93.1	71.6	81.8
07-12	86.2	93.3	91.7	92.6	94.5	89.2	89.5	87.1	97.1	96.7	86.1

We obtain similar results with the first part of the analysis:

→ 3 → 4 3

Continous Wavelet Transform

In contrast to the DWT, its continuous counterpart operates on a continuous set of scales:

$$W_{x}(s,u) = \langle x(t), \psi_{s,u}(t) \rangle = \int_{-\infty}^{\infty} x(t) \frac{1}{\sqrt{|s|}} \psi\left(\frac{t-u}{s}\right) dt$$
(9)

The original function x(t) is fully preserved by the wavelet transform, i.e. it can be perfectly reconstructed using:

$$\mathbf{x}(t) = \frac{2}{C_{\psi}} \int_{0}^{\infty} \left[\int_{-\infty}^{\infty} W_{\mathbf{x}}(s, u) \,\psi_{s, u}(t) \,du \right] \frac{ds}{s^2} \tag{10}$$

Limiting the integration over a range of scales performs **a band-pass filtering** of the series

Kubinschi Matei (DOFIN)

July, 2013 25 / 39

イロト イポト イヨト イヨト

Morlet family of Complex Wavelets

Analytic Formula for the Morlet Wavelet Family

$$\psi_{\omega_0}(f) = K e^{i\omega_0 t} e^{\frac{-t^2}{2}} \tag{11}$$

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

July, 2013 26 / 39

Wavelet Power Spectrum

The **wavelet power spectrum** or scalogram is defined, in analogy with Fourier Theory, as:

$$\mathsf{WPS}_{x}(u,s) = |W_{x}(u,s)|^{2}$$
(12)

• Measures the *variance distribution* present in the time series, over the time-scale plane

• Has the ability detect cyclical behavior present in a time series.

(人間) トイヨト イヨト

How to interpret the Wavelet Power Spectrum?

Figure: Wavelet Power Spectrum for Romania

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

July, 2013 28 / 39

3

イロト イポト イヨト イヨト

Wavelet Power Spectrum - Results

Figure: WPS - Bulgaria

Figure: WPS - Hungary

<ロ> (日) (日) (日) (日) (日)

▲ 重 ▶ 重 ∽ ९ ୯ July, 2013 29 / 39

Wavelet Power Spectrum - Results

Figure: WPS - Poland

Figure: WPS - Eurozone

July, 2013 30 / 39

Wavelet Coherency and Phase Difference

Wavelet Coherency - a measure of local correlation, in time and frequency, between two series:

$$\mathsf{R}_{xy} = \frac{|S(W_{xy})|}{\left[S\left(|W_x|^2\right)S\left(|W_y|^2\right)\right]^{1/2}}$$
(13)

Phase Difference - Measures the delays of the oscillations between two time series:

$$\phi_{xy} = \operatorname{Arctan}\left(\frac{\Im(S(w_{yy}))}{\Re(S(w_{xy}))}\right), \ \phi_{xy} \in (-\pi, \pi)$$
(14)

イロト 不得下 イヨト イヨト

Wavelet Coherence - Results

Kubinschi Matei (DOFIN)

July, 2013 32 / 39

Wavelet Coherence - Results

Kubinschi Matei (DOFIN)

July, 2013 33 / 39

2010

Wavelet Coherence - Results

Lithuania vs the Eurozone – Coherency plot

Figure: Coherence Plot - Lithuania

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Kubinschi Matei (DOFIN)

July, 2013 34 / 39

Conclusions (1)

- The most synchronized countries from the CEE group are Slovenia, followed by the Czech Republic, the Baltic States and Slovakia
- The Baltic States form **the most homogeneous** subgroup from the entire CEE region, with a highly correlated business cycle behaviour
- At the bottom of the hierarchy we find Romania, Bulgaria and Poland, results confirmed by both the classical and wavelet approaches
- Concerning lead/lag relationships, all the C.E.E. countries business cycles are in concordance with that of the Euro Area.

イロト 不得下 イヨト イヨト

Conclusions (2)

- Some countries are in the **same phase** as the Eurozone i.e. Slovenia, Slovakia, Estonia and others, namely Bulgaria and Romania, are **significantly lagging** behind.
- Romania and Bulgaria are not yet prepared to become a part of the single currency area.
- Dating the **business cycle turning points**, using Markov-switching models, could provide further insight into the behavior of business cycles.
- Another direction worth exploring is the use of **structural models**, which rely on certain economic assumptions formulated in the underlying model.

イロト 不得下 イヨト イヨト

Selective Bibliography

- Afonso, A., and A. Sequeira (2010), "Revisiting Business Cycle Synchronization in the European Union", ISEG Economics Working Paper no. 22/2010/DE/UECE.
- Aguiar-Conraria, L., and M.J. Soares (2011), "Business cycle synchronization and the Euro: a wavelet analysis", Journal of Macroeconomics 33 (3), 477-489.
- Altar, M., C. Necula and G. Bobeica (2009), "A Robust Assessment of the Romanian Business Cycle", Advances in Economic and Financial Research DOFIN Working Paper Series 28.
- Canova, F. (1998), "Detrending and Business Cycle Facts" Journal of Monetary Economics 41, no. 3: 475-512.
- Darvas, Z., and G. Vadas (2003a) "Univariate Potential Output Estimations for Hungary", MNB Working Paper 2003/8.
- Gallegati, M., (2008), "Wavelet analysis of stock returns and aggregate economic activity", Computational Statistics and Data Analysis 52, 3061-3074.

- Harvey, A.C. (1989), "Forecasting, Structural Time Series Models and the Kalman Filter", Cambridge University Press.
- Kalman, R.E. and R.S. Bucy (1961), "New Results in Linear Filtering and Prediction Theory", Journal Of Basic Engineering, 83: 95-107.
- Koopman, S. J. and V. E. Azevedo (2008), "Measuring Synchronization and Convergence of Business Cycles for the Euro area, UK and US", Oxford Bulletin of Economics and Statistics, Vol. 70, No. 1, 23-51.
- Rua, A., (2010), "Measuring co-movement in the time-frequency space", Journal of Macroeconomics 32, 685-691.
- Torrence, C. and G. P. Compo (1998), "A Practical Guide to Wavelet Analysis", Bulletin of the American Meteorological Society, 79, 605-618. Daubechies, I. (1992), "Ten Lectures on Wavelets", CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61 SIAM, Philadelphia. Percival, D., and A. Walden (2000), "Wavelet Methods for Time Series Analysis", Cambridge University Press.
- Strang, N., and T. Nguyen (1996), "Wavelets and Filter Banks", Wellesley-Cambridge Press.

イロト 不得 トイヨト イヨト 二日

Thank you for your attention!

Kubinschi Matei (DOFIN)

Business Cycle Synchronization

July, 2013 39 / 39

• • • • • • • • • • • •