DETECTING INTRADAY PRICE SHOCKS AND THEIR USE IN TESTING THE EFFICIENT MARKET HYPOTHESIS

Supervisor, Prof. Ph.D. Moisă ALTĂR

MSc. Student, Octavian ALEXANDRU

Presentation structure

Purpose of the paper

Literature review

Θ

 \odot

Price simulations methodology

Shock detection methodology

Data description

Results and interpretations

Conclusion and references

Purpose of the paper

• The aim of this paper is to find out whether there exists confirmation bias leading to one of the most well known price patterns in technical analysis – "head and shoulders".

Head		
Shoulder	Efficient markets	 Market prices reflect all current and past publicly available information. Returns in excess of average market returns on a risk-adjusted basis cannot be achieved.
	Confirmation bias	• The tendency of traders to favor information that confirms their beliefs and disregard the other.
	Market overreaction	• Hypothesis assuming that people react disproportionately to news regarding their assets, followed by an adjustment to the true value.
	x x	

Literature review

2005

2008

Ole E. Barndorff-Nielsen and Neil Shephard found a novel way of separating quadratic variation into its continuous and jump components.

George Tauchen and Hao Zhou created a finite sample experiment showing that individual jumps can be reliably extracted from intraday data series.

Lee M. Dunham and Geoffrey C. Friesen applied the previously developed theory on the stocks of S&P 100 and found that they account for about 15% of total volatility and 80% of the day's return.

Geoffrey C. Friesen, Paul A. Weller and Lee M. Dunham created a model which explains the success of certain trading rules based on price patterns.

Price simulations methodology

 In order to have a price series from where to extract price jumps, we simulated a stochastic volatility jump-diffusion process by using the following equations:

$$dp_{t} = \mu dt + \sigma_{t} dW_{1t} + J_{t} dq_{t}$$
$$d\sigma_{t}^{2} = \beta(\theta - \sigma_{t}^{2})dt + \gamma \sqrt{\sigma_{t}^{2}} dW_{2t}$$

1-second tick size

6.5 trading hours per day

Jump timing is exponentially distributed

Jump size is distributed normally

Shock detection methodology

Calculate realized variance and bi-power variation:

$$RV_{t} \equiv \sum_{j=1}^{m} r_{t,j}^{2} \to \int_{t-1}^{t} \sigma_{s}^{2} ds + \int_{t-1}^{t} J_{s}^{2} dq_{s} \qquad BV_{t} \equiv \frac{\pi}{2} \frac{m}{m-1} \sum_{j=2}^{m} |r_{t,j} r_{t,j-1}| \to \int_{t-1}^{t} \sigma_{s}^{2} ds$$

Calculate the $RJ_t = (RV_t - BV_t) \div RV_t$ ratio and scale it to a standard normal distribution.

$$ZJ_t \equiv RJ_t \div \sqrt{\left[\left(\frac{\pi}{2}\right)^2 + \pi - 5\right] \times \frac{1}{m} \times \max\left(1, \frac{TP_t}{BV_t^2}\right)} \to N(0, 1)$$

Use the predetermined α significance level for the scaled RJ_t and calculate the price jumps by:

$$\hat{J}_t = sign(r_t) \times \sqrt{(RV_t - BV_t) \times 1_{(ZJ_t \ge F_\alpha^{-1})}}$$

Data description

Intraday (5-minute intervals, 24h per day, 1059 days) foreign exchange rates

Bid-ask quotations and traded volume from 4/2/2009 to 4/23/2013

6 major and 2 metal exchange rates: AUD/USD, EUR/USD, USD/JPY, GBP/USD, USD/CHF, USD/SEK, XAU/USD and XAG/USD

Offer/bid ratio filter, sandwich filter (removes any extreme quote that is between two regular quotes)

Data provided by Dukascopy Bank SA, Geneva, Switzerland

Intermediary results

EUR/USD	Mean	Min	Max	Stdev
Realized variance (RV)	0.0000100	0.0000009	0.0001020	0.0000085
Sqrt of realized variance	0.0029630	0.0009380	0.0101160	0.0010840
Realized bi-power variance (BV)	0.0000091	0.0000007	0.0001070	0.0000081
BV/RV	0.9096870	0.3913650	1.1807540	0.0797240
RJ = (RV-BV)/RV	0.0903130	-0.1807540	0.6086350	0.0797240
ZJ = Scaled (normalized) RJ	1.6368190	-2.4250630	9.9955790	1.4404730

XAU/USD	Mean	Min	Max	Stdev
Realized variance (RV)	0.0001345	0.0000000	0.0024066	0.0001619
Sqrt of realized variance	0.0106932	0.0000003	0.0490568	0.0044912
Realized bi-power variance (BV)	0.0001198	0.0000000	0.0020668	0.0001381
BV/RV	0.8994630	0.0000000	1.1171288	0.1111046
RJ = (RV-BV)/RV	0.1005370	-0.1171288	1.0000000	0.1111046
ZJ = Scaled (normalized) RJ	1.58533474	-1.951167	21.74652	1.738649

Jump properties

EUR/USD	Mean	Min	Max	Stdev
Jump frequency	0.2011330			
Jump size	-0.0000082	-0.0036330	0.0043190	0.0014110
Abs. shock size	0.0012840	0.0004440	0.0043190	0.0005790
Abs. daily return*	0.0023470	0.0000000	0.0104990	0.0021170
Jump variance	0.0000020			
Total variance*	0.0000100			

XAU/USD	Mean	Min	Max	Stdev
Jump frequency	0.2011330			
Jump size	0.0003910	-0.0468050	0.0134190	0.0064350
Abs. jump size	0.0053660	0.0016020	0.0468050	0.0035540
Abs. daily return*	0.0079870	0.0000000	0.0408750	0.0071990
Jump variance	0.0000414			
Total variance*	0.0001150			

*Values are calculated for days with shocks only.

Jump properties for days with high volatility

EUR/USD	Mean	Min	Max	Stdev
Jump frequency	0.1947070			
Jump size	-0.0001551	-0.0036330	0.0043190	0.0017854
Abs. jump size	0.0016914	0.0009950	0.0043190	0.0005683
Abs. daily return	0.0028753	0.0000000	0.0134814	0.0024108
Jump variance	0.0000032			
Total variance	0.0000141			

XAU/USD	Mean	Min	Max	Stdev
Jump frequency	0.2173913			
Jump size	0.0003431	-0.0468050	0.0134190	0.0080054
Abs. jump size	0.0067241	0.0036090	0.0468050	0.0043122
Abs. daily return	0.0104523	0.0000000	0.0958922	0.0093102
Jump variance	0.0000641			
Total variance	0.0001958			

Variance decomposition

Histograms and normality

Jump autocorrelations

EUR/USD – all days

Autocorrelation	Partial Correlation	

Lag	Autocorrelation	Q-Stat	Probability
1	-0.122	3.201	0.074
2	0.012	3.232	0.199
3	0.046	3.7	0.296
4	0.056	4.394	0.355
5	0.022	4.4994	0.48

EUR/USD – high volatility days

Autocorrelation	Partial Correlation
111	

Lag	Autocorrelation	Q-Stat	Probability
1	0.032	0.1114	0.739
2	0.094	1.0478	0.592
3	-0.104	2.2265	0.527
4	0.015	2.2499	0.69
5	-0.001	2.2499	0.814

XAU/USD – all days

Lag	Autocorrelation	Q-Stat	Probability
1	-0.066	0.9448	0.331
2	-0.047	1.4177	0.492
3	-0.013	1.4523	0.693
4	-0.112	4.2185	0.377
5	0.098	6.3404	0.274

XAU/USD – high volatility days

Autocorrelation	Partial Correlation
1 1 1 1 1 1	

Lag	Autocorrelation	Q-Stat	Probability
1	-0.003	0.001	0.974
2	0.082	0.7947	0.672
3	-0.102	2.0478	0.563
4	-0.057	2.4451	0.654
5	0.003	2.4464	0.785

9th and 10th decile autocorrelations

By selecting the 20% largest shocks according to their absolute jump size for all currency pairs and studying their correlation with the next 3 shocks that followed, we found out the following:

Correlation matrix	Jump t	Jump t+1	Jump t+2	Jump t+3
Jump t	1	-0.10003	-0.05292	0.014124
Jump t+1		1	-0.07999	0.013818
Jump t+2			1	-0.19495
Jump t+3				1
Ljung-Box Statistic		3.451843	4.420842	4.49007
p-value		0.063181	0.109654	0.213178

All-shocks autocorrelations

We tested the autocorrelation of all the 1638 detected jumps aggregated into a single series, thus achieving a superior statistical significance, but lower correlation values.

Correlation matrix	Jump t	Jump t+1	Jump t+2	Jump t+3
Jump t	1	-0.075661	-0.069356	-0.028341
Jump t+1		1	-0.075981	-0.06701
Jump t+2			1	-0.064507
Jump t+3				1
Ljung-Box Statistic		9.393964	17.29235	18.612
p-value		0.002177	0.000176	0.000329

Conclusion

Significant price jumps in FX markets appear on average once every 5 days, and just as often during high volatility days.

Price jumps account for 5% to 10% of the total variance, have a mean equal to zero and account for a large part of the day's return.

Jumps have an overall negative autocorrelation, although no pair by itself revealed results statistically significant at a 5% level.

Confirmation bias could not be confirmed by the results. Actually, calculations were leading more to the market overreaction hypothesis.

THANK YOU!

- Barndorff-Nielsen, O., Shephard, N., 2004. Power and bi-power variation with stochastic volatility and jumps. Journal of Financial Econometrics 2, 1–48.
- Dunham, L., Friesen, G., 2007. An empirical examination of jump risk in US equity and bond markets. North American Actuarial Journal 11, 76–91.
- Friesen, G., Weller, P., Dunham, L., 2008. Price trends and patterns in technical analysis: A theoretical and empirical examination. Journal of Banking & Finance 33 (2009) 1089–1100.
- Huang, X., Tauchen, G., 2005. The relative contribution of jumps to total price variance. Journal of Financial Econometrics 3, 456–499.
- Tauchen, G., Zhou, H., 2006. Realized jumps on financial markets and predicting credit spreads. Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System.
- Daniel, K., Hirshleifer, D., Subrahmanyam, A., 1998. Investor psychology and security market under- and overreactions. The Journal of Finance • vol. LIII, no. 6, 1839-1885.