Financial (in)stability in Romania: The implications of Basel III

Supervisor: Prof. Moisă Altăr

Author: Adrian Sima

DOFIN 2012

The purpose

- Developing a framework that reveals the behavior of the Romanian banking system in transition to Basel III
- Conducting simulations to observe the coherence of the model reactions
- Estimating parameters using Bayesian techniques to reflect observed data

Basel III

• New capital requirement

Ratio/ RWA	Basel II	Transitional Arrangements						Basel III
	2012	2013	2014	2015	2016	2017	2018	2019
Total capital/ CCB	8.00%	8.00%	8.00%	8.00%	8.625%	9.25%	9.875%	10.50%

- New liquidity requirements involves a short-term and long-term :
 - Liquidity Coverage Ratio (LCR)
 - Net Stable Funding Ratio (NFSR)

Model features

- Starts from a classic RBC.
- Reflects both higher capital and liquidity requirements.
- New-Keynesian staggered prices model (a la Calvo).
- Endogenous and heterogeneous banking system (with interbank market).
- Endogenous repayment rates with balance sheet consequences.
- Credit and deposit insurance.

Flows between agents

Households

• The representative *j* M [0,1] household maximize its program facing a budget constraint by choosing consumption and labor supplied:

$$\max_{N_t,C_t} \sum_{s=0}^{\infty} \beta^s E_t \left[\mathcal{U}(C_{t+s}(j)) + \overline{m} \ln(1 - N_{t+s}(j)) - \frac{\chi}{2} \left(\frac{D_{t+s}^l(j)}{1 + r_t^l} - \frac{D^l(j)}{1 + r^l} \right)^2 \right]$$

under constraint

$$p_t C_t(j) + p_t \frac{D_t^l(j)}{1 + r_t^l} = w_t(j) N_t(j) + p_{t-1} D_{t-1}^l(j) + \pi_t^f + (1 - v_b) \pi_t^b + (1 - v_l) \pi_t^b$$

Intermediate production firms

 Intermediate production firm j M [0,1] is maximizing its individual profit and face a penalty cost for delayed repayment. It raises capital trough credit:

$$\max_{N_t(j), L_t^b(j), \alpha_t(j)} \sum_{s=0}^{\infty} E_t \Big[\beta^s \left\{ \pi_{t+s}^f(j) - d_f \left(1 - \alpha_{t+s}(j) \right) \right\}$$

under constraints

$$K_t(j) = (1 - \tau)K_{t-1}(j) + \frac{L_t^b(j)}{1 + r_t^b}$$

 $\pi_t^f(j) = \epsilon_t p_t^w \bar{\mathcal{F}}(K_t(j), N_t(j)) - w_t(j) N_t(j) - \alpha_t(j) p_t L_{t-1}^b(j) - \frac{\gamma}{2} \Big((1 - \alpha_{t-1}(j)) p_{t-1} L_{t-2}^b(j) \Big)^2 + (1 - \alpha_{t$

Final production firms and market demand aggregation

 Final production firm j M [0,1] is maximizing profit and sets the selling price (through a Calvo type mechanism):

$$\max_{\overline{\mathcal{F}_t(j), p_t(j)}} \sum_{s=0}^{\infty} E_t \Big[\beta^s \xi_p^s \{ p_t^* X_{tl} \mathcal{F}_t(j) - p_t^w \overline{\mathcal{F}_t}(j) \} \Big]$$

under constraints

$$\begin{split} X_{tl} &= \begin{cases} \pi_t \cdot \pi_{t+1} \cdot \pi_{t+2} \cdot \dots \cdot \pi_{t+l-1} & for \ l \ge 1 \\ 1 & for \ l = 1 \end{cases} \\ \mathcal{F}_t(j) &= \left(\frac{p_t(j)}{p_t}\right)^{-s^p} \mathcal{F}_t \\ p_t &= \left[\left(1 - \xi_p\right) (p_t^*)^{1-s^p} + \xi_p (\pi_{t-1}p_{t-1})^{1-s^p} \right]^{\frac{1}{1-s^p}} \end{split}$$

Market demand aggregation

$$\begin{split} \min_{\mathcal{F}_t(j)} & \int_0^1 p_t(j) \mathcal{F}_t(j) \, dj \\ \mathcal{F}_t &= \left(\int_0^1 \mathcal{F}_t(j)^{\frac{e^p - 1}{e^p}} \, dj \right)^{\frac{e^p}{e^p - 1}} \end{split}$$

under constraint

Financial system

• The representative merchant bank maximization program

$$\max_{\delta_t, D_t^{bd}, L_t^b, B_t^b, F_t^b} \sum_{s=0}^{\infty} E_t \Big[\beta^s \left\{ \ln(\pi_{t+s}^b) - d_{\delta} \left(1 - \delta_{t+s} \right) + d_{F^b} \big(F_t^b - k [\bar{w}_t L_t^b + \tilde{w} B_t^b] \big) \right\} \Big]$$

under constraints

$$\begin{split} F_t^b &= (1-\xi_b)F_{t-1}^b + \frac{p_{t-1}}{p_t}v_b\pi_{t-1}^b\\ \pi_t^b &= \alpha_t L_{t-1}^b + \frac{D_t^{bd}}{1+i_t} - \delta_t D_{t-1}^{bd} - \frac{L_t^b}{1+r_t^b} - \frac{\varpi}{2} \left((1-\delta_{t-1})D_{t-2}^{bd}\right)^2 + \zeta_b(1-\alpha_{t-1})p_{t-1}L_{t-2}^b\\ &+ (1+\rho_t)B_{t-1}^b - B_t^b \end{split}$$

• The representative deposit bank maximization program

$$\max_{D_t^{b^s}, D_t^l, B_t^l, F_t^l} \sum_{s=0}^{\infty} E_t \Big[\beta^s \Big\{ \ln \big(\pi_{t+s}^l \big) + d_{F^l} \big(F_t^l - k [\overline{w} D_t^{bs} + \widetilde{w} B_t^l] \big) \Big\} \Big]$$

under constraints

$$F_t^l = (1 - \xi_l) F_{t-1}^l + \frac{p_{t-1}}{p_t} v_l \pi_{t-1}^l$$
$$\pi_t^l = \delta_t D_{t-1}^{bs} + \frac{D_t^l}{1 + r_t^l} - D_{t-1}^l - \frac{D_t^{bs}}{1 + i_t} + \zeta_l (1 - \delta_{t-1}) D_{t-2}^{bs} + (1 + \rho_t) B_{t-1}^l - B_t^l$$

Supervisory Authority and Central Bank

• Supervisory Authority sets the capital adequacy ratio and the liquidity requirement and also the weights for risky assets:

 $k_t = \delta_k k_{t-1} + (1-\delta_k)k^* + req_k$

$$B_t^{gov} = \delta_B B_{t-1}^{gov} + (1 - \delta_B) B^{gov*} + B_t^{gov} req_l$$

$$\overline{\overline{w}}_t = \overline{\overline{w}} E_t \left[\left(\frac{\delta_t}{\delta_{t+1}} \right)^{\eta} \right] \qquad \overline{w}_t = \overline{w} E_t \left[\left(\frac{\alpha_t}{\alpha_{t+1}} \right)^{\eta} \right]$$

• Central Bank controls the interbank rate through a Taylor type rule and conducts liquidity interventions

$$i_t = \phi_i i_{t-1} + (1 - \phi_i)(\overline{\iota} + \Delta p_t + \phi_p(\Delta p_t))$$
$$M_t = v(i_t - \overline{\iota})$$
$$M_t = D_t^{bd} - D_t^{bs}$$

Implied model ratios and steady state

Implied rati	ios	Steady st	tate
$\frac{\mathcal{F}}{K} = 0.1$	$\frac{C}{\mathcal{F}} = 0.81$	$r^{b} = 11.68\%$ $r^{l} = 5,8\%$	C = 0.725 N = 0.20
$\frac{tpc^f}{\mathcal{F}} = 0.003$		i = 6.56% $L^b = 0.2754$	$\pi^{f} = 0.0314$
$\frac{B^b}{L^b} = 0.5$	$\frac{D^l}{L^b} = 1.16$	$D^{bd} = 0.0561$ $F^{b} = 0.0902$	$D^{l} = 0.3209$ $D^{bs} = 0.0561$
$\frac{D^{bd}}{L^b} = 0.64$	$\frac{F}{B} = 1.2$	$B^{b} = 0.1377$	$F^{l} = 0.0252$
$D^{bd} = D^{bs}$	$B^b = B^l$	$\pi^{b} = 0.0106$ $B^{gov} = 0.0688$	$B^{l} = 0.1377$ $\pi^{l} = 0.0033$
		$\alpha = 94.863\%$	<i>δ</i> = 99.786

Calibrated parameters

$d_{F^b} = 9.5996$	$d_{F^{l}} = 12.21$	114 $d_f = 0.0$)454 d _δ	= 3.6418
$\bar{m} = 3.2853$		γ = 79.7963	w ^b = 50	2.9814
$\bar{r} = 6.4\%$	$s_{gov} = 0.5$	$\rho^p = 0.5$	v = 5 M	$Markup_p = 1.05$
$\xi_p = 0.75$	$\delta_k = 0.5$	$\delta_B = 0.6$	$\phi_i = 0.8$	$\phi_p = 1.2$
<i>k</i> = 8%	$\overline{w} = 0.8$	$\overline{\overline{w}} = 10\%$	$\widetilde{w} = 120\%$	$\bar{m} = 3.28$
<i>ρ</i> = 20%	$v_b = v_l = 50\%$	$\beta = 0.986$	$\xi_b=6\%$	$\xi_l=6.5\%$
$\mu = 1/3$	$\tau = 0.03$	$\chi = 0.5$	$\zeta_b=80\%$	$\zeta_l=80\%$

Simulations (1)

• Capital requirement shock (1 p.p.)

Simulations (2)

• Liquidity requirement shock (25% increase)

Forecast

Estimated parameters (1)

Parameter	Prior mean	Posterior mean	Confidence interval (90%)		Prior distribution	Prior st. dev.
d_f	0.050	0.1363	0.1180	0.1559	Inverse Gamma	0.01
d_δ	3.600	3.9996	3.6508	4.3292	Inverse Gamma	0.05
γ	79	94.4546	86.0744	103.2842	Inverse Gamma	0.1
d_{F^b}	4.830	4.3827	4.0758	4.7015	Inverse Gamma	0.05
d_{F^l}	5.660	5.0892	4.8734	5.2860	Inverse Gamma	0.05
w ^b	506	689.8866	655.4378	723.4556	Inverse Gamma	0.05
δ_k	0.500	0.5016	0.4847	0.5183	Beta	0.05

Estimated parameters (2)

Impulse response functions (1)

Production price shock

Impulse response functions (2)

Liquidity requirement shock

Impulse response functions (3)

Total productivity factor shock

Book value shock

Conclusions and further directions for study

- New requirements will have a small negative impact on the output (as in MAG literature).
- The interbank flows are affected when the capital and liquidity requirements are changing.
- Data limitations.
- The DSGE framework can be further more developed (e.g. open economy, non-bank financial sector).

References (1)

- **BCBS (Basel Committee on Banking Supervision) (2010) (LEI Report)**, "An Assessment of the Long-Term Impact of Stronger Capital and Liquidity Requirements, Basel".
- **BCBS (2011A)** "Basel III: A global regulatory framework for more resilient banks and banking systems", December 2010 (rev June 2011)
- **BCBS (2010)** "Basel III: International framework for liquidity risk measurement, standards and monitoring", December 2010.
- **BCBS (2011B),** "Global systemically important banks: assessment methodology and additional requirements", Rule text.
- BCBS (2012), "Progress report on Basel III implementation", April 2012.
- **Blundell-Wignall, A. & Atkinson, P. (2010),** "Thinking beyond Basel III: Necessary solutions for capital and liquidity", Financial Market Trends, Vol. 2010 Issue 1
- *Calvo, G. A. (1983)*., "Staggered Prices in a Utility-Maximizing Framework." Journal of Monetary Economics 12: 383-98.
- *Christiano, L., Eichenbaum, M., & Evans, C. (2005), -* "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy, Journal of Political Economy, vol. 113, no. 1.
- *de Walque G., O. Pierrard, and A. Rouabah (2010).,* "Financial (In)stability, Supervision, and Liquidity Injections: A Dynamic General Equilibrium Approach." The Economic Journal, 120 (December), 1234-1261.

References (2)

- *Gerali, A., Neri S., Sessa L. & Signoretti F.M. (2010)*, "Credit and Banking in a DSGE Model of the Euro Area", Journal of Money, Credit and Banking, Supplement to Vol. 42, No. 6, pp. 107-141.
- Goodfriend, M., & McCallum, B. (2007). "Banking and interest rates in monetary policy analysis: a quantitative exploration," Proceedings, Federal Reserve Bank of San Francisco.
- Goodhart, C., Suninrand, P., & Tsomocos, D., (2004), "A Risk Assessment model for banks", Discussion paper, 504, Financial Markets Group, London School of Economics and Political Science.
- Griffoli, T. M. (2010), DYNARE v4 User Guide, Public beta version.
- *MAG (Macroeconomic Assessment Group) (2010),* —Assessing the Macroeconomic Impact of the Transition to Stronger Capital and Liquidity Requirements Final Report, Basel Committee on Banking Supervision, December.
- **Roger S. & J. Vlček (2011),** "Macroeconomic Costs of Higher Bank Capital and Liquidity Requirements", IMF Working paper

Thank you!