The Academy of Economic Studies DOCTORAL SCHOOL OF FINANCE AND BANKING

Kalman Filter

HERD BEHAVIOR TOWARDS THE MARKET INDEX: EVIDENCE FROM ROMANIAN STOCK EXCHANGE

FIDCC

Student: RALUCA ELENA POP Supervisor: Professor MOISĂ ALTĂR

Bucharest 2012

CONTENTS

- Motivation
- > Objectives
- > Literature review
- Methodology
 - Beta herding Time–varying beta determination
- > Data and results
- > Robustness of the results
- Conclusions

MOTIVATION – WHY STUDY HERD BEHAVIOR?

- When investing in a financial market where herding is present, a larger number of securities are needed to achieve the same level of diversification than in an otherwise normal market (*Chang, Cheng and Khorana, 2000*).
- Herding effect on stock price movements can lead to mispricing of securities since rational decision making is disturbed through the use of **biased** views of expected return and risk (*Hwang and Salmon, 2004*).
- The results about the existence of herd behavior are very useful for modeling stock behavior and provide information to the policymakers about whether or not they should be concerned about potential **destabilizing effects of herd behavior** (*Demirer and Kutan, 2006*).

OBJECTIVES

- The study of herd behavior towards market index in an emerging European country (Romania) using the cross-sectional variance of the betas from the CAPM model
- Determination of best estimation technique for time-varying systematic risk in terms of models' in-sample performance from:

• GARCH Conditional Betas

- Stochastic Volatility Conditional Betas
- Kalman Filter Based Approaches

LITERATURE REVIEW

- > There is a lack of a direct link between the theoretical discussion of herd behavior and the empirical specifications used to test for herding
- Theoretical research has tried to identify the reasons and mechanism through which herd can arise: Banerjee (1992); Bikhchandani, Hirshleifer and Welch (1992); Welch (1992); Avery and Zemsky (1998)
- The empirical herding literature uses herding as a synonym for systematic or clustered trading. Two streams of empirical literature have been developed to investigate the existence of herding in financial markets:
 - The first stream analyzes the tendency of individuals or certain groups of investors to follow each other and trade an asset at the same time: *Lakonishok, Shleifer & Vishny (1992); Wermers (1995)*
 - The second stream focuses on the market-wide herding: Christie & Huang (1995); Chang, Cheng & Khorana (2000); Hwang & Salmon (2001, 2004, 2008); Khan, Hassairi & Viviani (2011)

Methodology - Beta Herding

Based on *Hwang and Salmon (2004, 2008)*

$$CAPM: \mathbf{E}_{t}(\mathbf{r}_{it}) = \mathbf{\beta}_{imt} \mathbf{E}_{t}(\mathbf{r}_{mt})$$
(1)
$$\frac{E_{t}^{b}(\mathbf{r}_{it})}{E_{t}(\mathbf{r}_{mt})} = \beta_{imt}^{b} = \beta_{imt} - h_{mt}(\beta_{imt} - 1)$$
(2)

• When $h_{mt} = 0$, there is no herding and the equilibrium CAPM holds

• When $h_{mt} = 1$, there is perfect herding towards the market portfolio

• When $0 < h_{mt} < 1$, beta herding exists in the market and the degree of herding depends on the magnitude of h_{mt}

• When $h_{mt} < 0$, there is reversed herding.

 $Std_{c}(\beta_{mt}^{b}) = Std_{c}(\beta_{mt})(1 - h_{mt})$

Taking logarithms of Eq.3 on both sides and making the following notations:
$$\mu_{m} = E(log[Std_{c}(\beta_{mt})]) \text{ and } H_{mt} = log(1 - h_{mt}), \text{ we obtain:}$$

(4)

$$\begin{cases} \log \left[Std_{c}\left(\beta_{imt}^{b}\right) \right] = \mu_{m} + H_{mt} + \upsilon_{mt} \quad \text{where} \quad \upsilon_{mt} \sim iid \left(0, \sigma_{mv}^{2}\right) \\ H_{mt} = \phi_{m}H_{mt-1} + \eta_{mt} \quad \text{where} \quad \eta_{mt} \sim iid \left(0, \sigma_{m\eta}^{2}\right) \end{cases}$$
(5)

state space model

6

METHODOLOGY - TIME-VARYING BETA

- *Hwang and Salmon (2008)*, as well as *Khan, Hassairi and Viviani (2011)* use the standard OLS technique
- > Wang (2008) adopts a rolling robust regression approch
- > My approach is a comparison between 3 different modeling techniques:
 - GARCH Conditional Betas
 - Stochastic Volatility Conditional Betas
 - Kalman Filter Based Approaches

METHODOLOGY - TIME-VARYING BETA GARCH CONDITIONAL BETAS

Model 1: DCC bivariate GARCH model (Engle and Sheppard, 2001)

$$\begin{split} r_{t} &/\Omega_{t-1} \sim N (0, H_{t}) \\ H_{t} &= D_{t} R_{t} D_{t} \\ D_{t} &= diag\{h_{i,t}^{\frac{1}{2}}\} \\ h_{i,t} &= \omega_{i} + \sum_{q=1}^{Q_{i}} \alpha_{i,q} r_{i,t-q}^{2} + \sum_{p=1}^{P_{i}} \beta_{i,p} h_{i,t-p} \\ \varepsilon_{t} &= D_{t}^{-1} r_{t} \\ Q_{t} &= (1 - \sum_{n=1}^{N} \alpha_{n} - \sum_{m=1}^{M} \beta_{m}) \bar{Q} + \sum_{n=1}^{N} \alpha_{n} (\varepsilon_{t-n} \varepsilon_{t-n}) + \sum_{m=1}^{M} \beta_{m} Q_{t-m} \\ R_{t} &= Q_{t}^{*-1} Q_{t} Q_{t}^{*-1} \end{split}$$

Model 2: FIDCC bivariate GARCH model

$$\begin{cases} r_{t} / \Omega_{t-1} \sim N(0, H_{t}) \\ H_{t} = D_{t} R_{t} D_{t} \\ D_{t} = diag\{h_{i,t}^{\frac{1}{2}}\} \\ \left[1 - \beta(L)\right] h_{i,t} = \omega_{i} + \left[1 - \beta(L) - \phi(L)(1 - L)^{d}\right] r_{i,t}^{2} \\ \varepsilon_{t} = D_{t}^{-1} r_{t} \\ Q_{t} = (1 - \sum_{n=1}^{N} \alpha_{n} - \sum_{m=1}^{M} \beta_{m}) \bar{Q} + \sum_{n=1}^{N} \alpha_{n} (\varepsilon_{t-n} \varepsilon_{t-n}) + \sum_{m=1}^{M} \beta_{m} Q_{t-m} \\ R_{t} = Q_{t}^{*-1} Q_{t} Q_{t}^{*-1} \end{cases}$$

$$\widehat{\beta}_{it}^{GARCH} = \frac{Cov(r_{it}, r_{mt})}{Var(r_{mt})}$$

BETA <u>STOCHASTIC VOLATILITY CONDITIONAL</u> <u>BETAS</u>

Model 3: SV model with causal volatility and dynamic correlation (Johansson, 2009; Yu and Meyer, 2006)

$$\begin{cases} r_{t} / h_{t} = diag(exp(h_{t} / 2))\varepsilon_{t}, \varepsilon_{t} \sim N(0, \Sigma_{\varepsilon,t}) \\ \Sigma_{\varepsilon,t} = \begin{pmatrix} 1 & \rho_{t} \\ \rho_{t} & 1 \end{pmatrix} \\ h_{t+1} = \gamma + \Gamma(h_{t} - \gamma) + \eta_{t}, \eta_{t} \sim N(0, diag(\sigma_{\eta_{1,t}}^{2}, \sigma_{\eta_{2,t}}^{2})) \\ with h_{0} = \gamma \end{cases} \\ z_{t+1} = \delta_{0} + \delta_{1}(z_{t} - \delta_{0}) + \sigma_{\rho}\upsilon_{t}, \upsilon_{t} \sim N(0, 1) \\ \rho_{t} = \frac{\exp(z_{t}) - 1}{\exp(z_{t}) + 1} with z_{0} = \delta_{0} \end{cases}$$

Model 4: SV model with causal volatility, dynamic correlation and t error distribution

$$\begin{cases} r_t / h_t = diag \left(exp \left(h_t / 2 \right) \right) \varepsilon_t, \ \varepsilon_t \sim \mathbf{t} \left(0, \Sigma_{\varepsilon,t}, v \right) \\ \Sigma_{\varepsilon,t} = \begin{pmatrix} 1 & \rho_t \\ \rho_t & 1 \end{pmatrix} \\ h_{t+1} = \gamma + \Gamma(h_t - \gamma) + \eta_t, \eta_t \sim N(0, \ diag \ (\sigma_{\eta_1, t}^2, \sigma_{\eta_2, t}^2)) \\ with \ h_0 = \gamma \\ z_{t+1} = \delta_0 + \delta_1 \left(z_t - \delta_0 \right) + \sigma_0 v_t, \ v_t \sim N(0, 1) \end{cases}$$

$$egin{aligned} & z_{t+1} = \delta_0 + \delta_1 ig(z_t - \delta_0 ig) + \sigma_
ho v_t, \ v_t \sim Nig(0, \ &
ho_t = rac{\expig(z_t ig) - 1}{\expig(z_t ig) + 1} with \, z_0 = \delta_0 \end{aligned}$$

$$\widehat{\boldsymbol{\beta}}_{it}^{SV} = \frac{\rho_t^i (\exp(h_{stock\,i,t}))^{1/2}}{(\exp(h_{market,t}))^{1/2}}$$

9

METHODOLOGY - TIME-VARYING BETA KALMAN FILTER BASED APPROACHES

The state space approach allows to model and to estimate the time-varying structure of beta directly

Model 5: Beta develops as a random walk

$$\begin{cases} r_{it} = \beta_{it}^{KF \ RW} r_{mt} + \varepsilon_{it} \\ \beta_{it}^{KF \ RW} = \beta_{i,t-1}^{KF \ RW} + \eta_{it} \end{cases}$$

Model 6: Beta develops as a mean-reverting process

$$\begin{cases} r_{it} = \beta_{it}^{KF MR} r_{mt} + \varepsilon_{it} \\ \beta_{it}^{KF MR} = \bar{\beta}_i + \phi_i (\beta_{i,t-1}^{KF MR} - \bar{\beta}_i) + \eta_{it} \end{cases}$$

$$\begin{split} \mathbf{E}(\eta_{it}\eta_{iT}^{'}) &= \begin{cases} \sigma_{\eta i}^{2} , for t = T \\ 0, otherwise \end{cases} \\ \mathbf{E}\left(\varepsilon_{it}\varepsilon_{iT}^{'}\right) &= \begin{cases} \sigma_{i}^{2} , for t = T \\ 0, otherwise \end{cases} \\ \mathbf{E}\left(\varepsilon_{it}\eta_{iT}^{'}\right) &= 0 \qquad \text{for all t and T} \end{split}$$

10

DATA

> Weekly adjusted returns of stocks listed on Bucharest Stock Exchange,

covering the period from January 2003 to March 2012 (65 stocks)

- The de-listed companies (either as a cause of bankruptcy or by own choice) have not been excluded from the study, trying to avoid in this way selection bias
- The newly listed stocks during the considered period are included in the analysis from the time they entered the market
- The only condition for a stock to be kept in the study was to have at least 1 year of trading history
- Weekly return of market index BETC (reflects the evolution of all listed stocks, except Investment Funds)
- > Deposit facility rate as the risk free rate

ESTIMATION - TIME-VARYING BETA <u>GARCH CONDITIONAL BETAS</u>

- The estimation was carried out in *Matlab*, using 2 toolboxes provided by Kevin Sheppard (MFE, UCSD)
- > 11 specifications were tested for conditional variances:
 - DCC (1, 1, p, q) with p, q < 3
 - FIDCC (1, 1, p, d, q) with p, q < 2
- The best specification for conditional variances was determined based on the Akaike information criteria

KALMAN FILTER BASED APPROACHES

- > The estimation was carried out in *Eviews*
- > The best specification for the transition equation was determined based on the Akaike information criteria

ESTIMATION - TIME-VARYING BETA <u>STOCHASTIC VOLATILITY CONDITIONAL</u> <u>BETAS</u>

- > The estimation was carried out in *WinBUGS*
- Prior distribution for the parameters
 (Chang, Qian & Jian, 2011; Meyer & Yu, 2006; Meyer & Yu, 2000; Kim, Shephard & Chib, 1998)

$$\begin{split} \gamma_{1} &\sim N\left(0, \ 25\right) \\ \gamma_{2} &\sim N\left(0, \ 25\right) \\ \gamma_{11}^{*} &\sim beta(20, 1.5), \gamma_{11}^{*} = (\gamma_{11} + 1) / 2 \\ \gamma_{22}^{*} &\sim beta(20, 1.5), \gamma_{22}^{*} = (\gamma_{22} + 1) / 2 \\ \gamma_{12} &\sim N\left(0, \ 10\right) \\ \gamma_{21} &\sim N\left(0, \ 10\right) \\ \sigma_{\eta 1}^{2} &\sim Igamma(2.5, 0.025) \\ \sigma_{\eta 2}^{2} &\sim Igamma(2.5, 0.025) \\ \delta_{0} &\sim N\left(0.7, \ 10\right) \\ \delta_{1}^{*} &\sim beta(20, 1.5), \delta_{1}^{*} = (\delta_{1} + 1) / 2 \\ \sigma_{\rho}^{2} &\sim Igamma(2.5, 0.025) \\ v^{*} &\sim \chi_{(4)}^{2}, v^{*} = v / 2 \end{split}$$

The comparison between the two proposed specifications of the SV model was realized through deviance information criteria (DIC)

RESULTS - TIME-VARYING BETA <u>GARCH CONDITIONAL BETAS</u>

GARCH specification chosen by the AIC for modeling conditional variances in DCC(1,1) GARCH model:

Specification	Stock
GARCH(1,0)	RTRA, BRK, COMI, ELGS, IMP, SOCP, STZ, TLV
GARCH(2,0)	-
GARCH(0,1)	ART, CBC, CGC, RMAH, RPH
GARCH(1,1)	ALR, ALU, ARTE, ARM, BRD, CEON, CMF, EFO, FLA, MEF, MJM, MPN, OLT, PEI, PPL, RRC, SNO, SRT, TBM, VESY, VNC, ZIM
GARCH(2,1)	AMO, APC, ARS, ATB, AZO, BIO, BCC, BRM, CMP, COFI, DAFR, ECT, EPT, EXC, OIL, PCL, PREH, ROCE, SCD, SNP, SPCU, TEL, TUFE, UAM
GARCH(0,2)	ELMA, ENP
GARCH(1,2)	ALT, COTR, PTR
GARCH(2,2)	-
FIGARCH(0,d,1)	-
FIGARCH(1,d,0)	-
FIGARCH(1,d,1)	-

RESULTS - TIME-VARYING BETA GARCH CONDITIONAL BETAS – TESTING FOR CONSTANT

CORRELATION

▶ I used the test proposed by Engle and Sheppard (2001):

$$egin{aligned} &H_{_{0}}:R_{_{t}}=R\ &H_{_{1}}:vech^{u}\left(R_{_{t}}
ight)=vech^{u}\left(\stackrel{-}{R}
ight)+eta_{_{1}}vech^{u}\left(R_{_{t-1}}
ight)+eta_{_{2}}vech^{u}\left(R_{_{t-2}}
ight)+\ldots+eta_{_{p}}vech^{u}\left(R_{_{t-p}}
ight) &= -1/2 \end{aligned}$$

• Let
$$Y_t = vech^u [v_t v_t - I_k]$$
, where $v_t = (D_t^{-1} r_t) R$

• Under the null of constant correlation, the residuals should be i.i.d., and the constant and the lagged parameters in the vector autoregression:

$$Y_t = \alpha + \beta_1 Y_{t-1} + \beta_2 Y_{t-2} + \ldots + \beta_s Y_{t-p} + \eta_t \quad \text{should be zero.}$$

• The test statistic is thus given by:

$$\frac{\widehat{\delta}X'X\widehat{\delta}'}{\widehat{\delta}^2} \sim \chi^2 \ (p+1)$$

where δ are the estimated regression parameters and X is a matrix consisting of the regressors.

RESULTS - TIME-VARYING BETA

<u>GARCH CONDITIONAL BETAS – TESTING FOR CONSTANT</u> <u>CORRELATION</u>

> Engle and Sheppard's test results:

Symbol	p-value	Symbol	p-value	Symbol	p-value	Symbol	p-value
ALR	0.0150	CEON	0.0132	IMP	0.0009	SCD	0.0004
ALT	0.0512	CGC	0.0345	MEF	0.0163	SNO	0.0001
ALU	0.0072	CMF	0.0812	MJM	0.0001	SNP	0.0003
AMO	0.0021	СМР	0.0010	MPN	0.0033	SOCP	0.0000
APC	0.0056	COFI	0.0100	OIL	0.0003	SPCU	0.0001
ARS	0.0502	СОМІ	0.0005	OLT	0.0004	SRT	0.0004
ARTE	0.0007	COTR	0.0387	PCL	0.1165	STZ	0.0040
ART	0.0026	DAFR	0.0227	PEI	0.0002	TBM	0.0102
ATB	0.0012	ECT	0.0017	PPL	0.0015	TEL	0.0023
AZO	0.0582	EFO	0.0309	PREH	0.0162	TLV	0.0106
ARM	0.0137	ELGS	0.0008	PTR	0.0423	TUFE	0.0058
BIO	0.0281	ELMA	0.0061	RMAH	0.0399	UAM	0.0041
BCC	0.0246	ENP	0.1024	ROCE	0.0001	UZT	0.0561
BRD	0.0065	EPT	0.0193	RPH	0.0960	VESY	0.0042
BRK	0.0009	EXC	0.0952	RRC	0.0044	VNC	0.0174
BRM	0.0007	FLA	0.0363	RTRA	0.0285	ZIM	0.0723
CBC	0.0076						

> The null of constant correlation, is rejected by the test with a probability of 90% in favor of a time varying correlation matrix

RESULTS - TIME-VARYING BETA <u>STOCHASTIC VOLATILITY CONDITIONAL</u> <u>BETAS</u>

- > With no exception, the second specification considered (the excess return shocks modeled by a t distribution) is chosen
- > The conditional correlation parameters indicate persistent correlation patterns between the stocks and the market, with a posterior mean larger than 0.5 in all cases

KALMAN FILTER BASED APPROACHES

- Even though the mean-reverting model requires the estimation of two additional parameters, the AIC is generally smaller than for the simpler random walk specification
- So, for most of the stocks the second Kalman Filter specification is preferred

RESULTS - TIME-VARYING BETA <u>STOCHASTIC VOLATILITY CONDITIONAL</u> <u>BETAS</u>

<u>COMPARISON OF CONDITIONAL BETA</u> <u>ESTIMATES</u>

- > The different techniques are ranked based on their in-sample performance
- > Having forecast r_{it} using each of the conditional beta series (the series of market return is assumed to be known in advance), the root mean squared error (*RMSE*) is determined:

			DCC	SV normal	SV t-student				DCC	SV norm <u>al</u>	SV t-student			DCC	SV norm <u>al</u>	SV t-student
Symbol	KF RW	KF MR	GARCH	distribution	distribution	Symbol 1	KF RW I	KF MR	GARCH	distribution	distribution	Symbol 1	KF RW KF MR	GARCH	distribution	distribution
ALR		0.035	0.0523		0.0481	COMI		0.054	0.067		0.0628	RMAH	0.063	0.1121		0.1022
ALT		0.053	0.0525		0.0476	COTR		0.076	0.079		0.0746	ROCE	0.048	0.0532		0.0496
ALU	0.039		0.0536		0.0478	DAFR		0.039	0.057		0.0512	RPH	0.087	0.084		0.0845
AMO	0.073		0.0748		0.0687	ECT		0.054	0.057		0.0543	RRC	0.043	0.0486		0.0445
APC		0.053	0.0548		0.0527	EFO	0.065		0.066		0.0638	RTRA	0.046	0.0461		0.0454
ARS	0.049		0.0501		0.048	ELGS	0.113		0.115		0.112	SCD	0.035	0.0391		0.0359
ARTE	0.066		0.0681		0.0633	ELMA		0.069	0.071		0.0683	SNO	0.048	0.0499		0.0468
ART		0.046	0.0626		0.0588	ENP		0.045	0.05		0.0447	SNP	0.022	0.0282		0.0256
ATB		0.03	0.0357		0.0336	EPT		0.076	0.08		0.0717	SOCP	0.05	0.0517		0.0492
AZO		0.049	0.0783		0.0763	EXC		0.052	0.054		0.052	SPCU	0.078	0.0791		0.0756
ARM		0.045	0.0592		0.056	FLA		0.043	0.066		0.0624	SRT	0.049	0.052		0.0485
BIO		0.042	0.0473		0.0425	IMP	0.061		0.068		0.065	STZ	0.064	0.0713		0.068
BCC		0.036	0.049		0.0464	MEF		0.063	0.064		0.0616	TBM	0.041	0.0495		0.0456
BRD		0.019	0.0251		0.0221	MJM	0.059		0.066		0.0582	TEL	0.029	0.03		0.0278
BRK		0.043	0.0456		0.0412	MPN	0.058		0.059		0.0573	TLV	0.04	0.0439		0.0411
BRM		0.047	0.0538		0.0509	OIL		0.047	0.053		0.0494	TUFE	0.039	0.0432		0.0394
CBC		0.073	0.0757		0.0726	OLT		0.091	0.092		0.0885	UAM	0.066	0.0678		0.0635
CEON		0.05	0.0639		0.06	PCL		0.05	0.051		0.0489	UZT	0.09	0.0902		0.0857
CGC	0.067		0.069		0.0717	PEI	0.059		0.062		0.0573	VESY	0.06	0.0621		0.0585
CMF	0.059		0.0624		0.058	PPL	0.059		0.06		0.0556	VNC	0.032	0.0392		0.0369
СМР		0.045	0.0573		0.0509	PREH	0.089		0.092		0.0876	ZIM	0.056	0.0574		0.0556
COFI		0.102	0.1071		0.1035	PTR		0.047	0.062		0.0561					

RESULTS - BETA HERDING

- The results sustain the findings of Hwang and Salmon (2004), Wang (2008), Khan, Hassairi and Viviani (2011): periods of market crisis or stress help return markets to equilibrium, implying that efficient pricing may be helped by market stress
- > There are a number of cases where herding behavior turned before the market itself turn

RESULTS ROBUSTNESS OF THE HERDING MEASURE

Basic Model

$$\begin{cases} \log \left[Std_{c}\left(\beta_{mt}^{b}\right) \right] = \mu_{m} + H_{mt} + \upsilon_{mt} \\ H_{mt} = \phi_{m}H_{mt-1} + \eta_{mt} \end{cases}$$

Alternative Model 1
 market log-volatility

$$\left[log \left[Std_c \left(\beta_{mt}^b \right) \right] = \mu_m + H_{mt} + c_{m1} log \sigma_{mt} + c_{m2} r_{mt} + \upsilon_{mt} \right]$$

$$H_{mt} = \phi_m H_{mt-1} + \eta_{mt}$$

 market return

Alternative Model 2
average population deposit interest rate
$$\begin{cases}
\log \left[Std_c\left(\beta_{mt}^b\right)\right] = \mu_m + H_{mt} + c_{m1}log\sigma_{mt} + c_{m2}r_{mt} + c_{m3}DR_t + c_{m4}Div_t + \nu_{mt} \\
H_{mt} = \phi_m H_{mt-1} + \eta_{mt}
\end{cases}$$
average dividend ratio

RESULTS ROBUSTNESS OF THE HERDING MEASURE

	No exogenous variables (Basic Model)	Excess market return and volatility (Alternative Model 1)	Excess market return and volatility, deposit interest rate, dividend rate (Alternative Model 2)
μ_m	-1.4461	-1.4518	-1.3669
	(0.0000)	(0.0000)	(0.0000)
Φ_m	0.9052	0.9025	0.8489
	(0.0000)	(0.0000)	(0.0000)
σ_{mv}	0.1048	0.1028	0.0986
	(0.0000)	(0.0000)	(0.0000)
$\sigma_{m\eta}$	0.1226	0.1234	0.1284
,	(0.0000)	(0.0000)	(0.0000)
C_{m1}		0.0008*	-0.0001*
$\circ m_{\perp}$		(0.8715)	(0.986)
c_{m2}		-0.5734	-0.6141
		(0.0081)	(0.0052)
c_{m3}			0.2315^{*}
			(0.8526)
			-1.1535
c_{m4}			(0.0000)

*The estimate is not significant at 5% level.

CONCLUSIONS

- Based on the in sample performance criteria, the mean reverting process, estimated by the use of the Kalman Filter and the Stochastic Volatility model with a t distribution for the excess return shocks offer the best estimation results of time-varying betas between the various techniques compared.
- Periods of market crisis or stress help return market to equilibrium, implying that efficient pricing may be helped by market stress.
- Herding towards the market shows significant movements and persistence independently from and given market conditions as expressed in return volatility and the level of the mean return.
- > Macro factors do not explain the herd behavior.

THANK YOU FOR YOUR ATTENTION!