A state-space model for estimating Romania’s output gap and natural rate of unemployment

MSc Student: Valeriu Nalban
Supervisor: Prof. Moisă Altăr

DOFIN

June 2012
Motivation

- Estimate cyclical position of the economy; important for:
 - measuring future inflationary pressures;
 - evaluating fiscal policy stance;
 - assessing structural reforms.
- Determine dominant approach for unemployment rate dynamics.
- Evaluate the effects of economic crisis.
- Assess performance of multivariate filter over univariate statistical filters.
Literature review (1)

Four groups of quantitative methods (Šrámková et al. [2010]):

- Univariate statistical filters:
 - Hodrick-Prescott (HP);
 - band-pass: Baxter-King (BK) and Christiano-Fitzgerald (CF);
 - Beveridge-Nelson (BN) decomposition.

- Production function approach

- Multivariate semi-structural methods:
 - multivariate HP and BN;
 - Blanchard-Quah structural VAR;
 - state-space models and Kalman filter.

- Direct measures and surveys
Natural Rate of Unemployment (NRU) vs. Non-Accelerating Inflation Rate of Unemployment (NAIRU) (Estrella and Mishkin [1999], Batini and Greenslade [2006]):

- NRU captures the long-run equilibrium determined by the structural characteristics of labour and goods markets;
- NAIRU is defined solely in relation to the level of unemployment that is consistent with a stable rate of inflation;
- The most intuitive distinction is to think of time horizon to which they refer;
- As the effects of shocks fade away, the NAIRU tends towards the NRU.
Two theories of equilibrium unemployment rate:

- **Structuralist approach (Phelps [1968]):** equilibrium rate of unemployment depends on labour market characteristics and other fundamental macroeconomic variables:
 - productivity trends (Brüh et al. [2011]),
 - replacement ratio, union density (Cassino and Thornton [2002]),
 - real interest rates (Logeay and Tober [2003]);

- **Persistence approach (Blanchard and Summers [1986]):** temporary shocks have very persistent effects on the equilibrium unemployment rate
 - hysteresis as an extreme case
Phillips curve (1)

- **price and wage settings** (Layard et al. [2005] imperfect competition model):
 \[
 p_t - w_t^e = \beta_0 - \beta_1 u_t - \beta_{11} \Delta u_t - \beta_2 (p_t - p_t^e) - q_t + z_p
 \]

 \[
 w_t - p_t^e = \alpha_0 - \alpha_1 u_t - \alpha_{11} \Delta u_t - \alpha_2 (w_t - w_t^e) + q_t + z_w
 \]

- **NRU** (fulfilled expectations):
 \[
 \bar{u}_t = \frac{\beta_0 + \alpha_0 + z_p + z_w}{\beta_1 + \alpha_1}
 \]

- **assumption 1**: equal price and wage surprises:
 \[
 p_t - p_t^e = w_t - w_t^e
 \]

- **assumption 2**: inflation rate follows a random walk:
 \[
 \pi_t = \pi_{t-1} + \nu_t \iff E_{t-1} \pi_t = \pi_{t-1} \iff p_t - p_t^e = \Delta \pi_t
 \]
Phillips curve (2)

- **Phillips curve:**

\[
\Delta \pi_t = -\theta_1 (u_t - \bar{u}_t) - \theta_{11} \Delta u_t
\] \hspace{1cm} (2)

where \(\theta_1 = \frac{\beta_1 + \alpha_1}{2 + \beta_2 + \alpha_2} > 0 \) and \(\theta_{11} = \frac{\beta_{11} + \alpha_{11}}{2 + \beta_2 + \alpha_2} > 0 \).

- **unemployment rate dynamics:**

\[
u_t = \frac{\theta_1}{\theta_1 + \theta_{11}} \bar{u}_t + \frac{\theta_{11}}{\theta_1 + \theta_{11}} u_{t-1} - \frac{1}{\theta_1 + \theta_{11}} \Delta \pi_t.
\] \hspace{1cm} (3)

- **stable inflation** \((\Delta \pi_t = 0):\)

\[
u_t = k \bar{u}_t + (1 - k) u_{t-1},
\] \hspace{1cm} (4)

where \(k = \frac{\theta_1}{(\theta_1 + \theta_{11})}, 0 < k < 1 \).
Okun’s law and aggregate demand

- **Okun’s law:**

\[
y_t - \bar{y}_t = -\omega (u_t - \bar{u}_t)
\]

(5)

- **Aggregate demand** (Berger and Everaert [2008]):

\[
y_t = \frac{1}{\lambda} (m_t - p_t) + \frac{1}{\mu} x_t + \gamma s_t
\]

- Add and subtract \(\bar{y}_t\), take first differences:

\[
\Delta y_t = \Delta \bar{y}_t - \frac{1}{\lambda} (\pi_t - \bar{\pi}_t) + \gamma \Delta s_t
\]

(6)

where \(\bar{\pi}_t = \Delta m_t + (\lambda/\mu) \Delta x_t - \lambda \Delta \bar{y}_t\)
\(\Delta \pi_t = -\theta_1(u_t - \bar{u}_t) - \theta_{11} \Delta u_t + \epsilon_t^\pi \) \hspace{1cm} (7a)

\(y_t - \bar{y}_t = -\omega(u_t - \bar{u}_t) + \epsilon_t^u \) \hspace{1cm} (7b)

\(\Delta y_t = \Delta \bar{y}_t - \frac{1}{\lambda}(\pi_t - \bar{\pi}_t) + \gamma \Delta s_t + \epsilon_t^y \) \hspace{1cm} (7c)
Transition equations

\[\bar{y}_t = \bar{y}_{t-1} + \psi_{t-1} + \eta^1_t \] \hfill (8a)
\[\psi_t = \psi_{t-1} + \eta^2_t \] \hfill (8b)
\[\bar{u}_t = (1 + \delta)\bar{u}_{t-1} - \delta \bar{u}_{t-2} + \eta^3_t \] \hfill (8c)
\[\bar{\pi}_t = \bar{\pi}_{t-1} + \eta^4_t \] \hfill (8d)
Adaptive RWMH and Geweke’s CD

- **posterior mode estimate:**
 \[
 \arg \max_{\theta} \log p(\theta | y) = \log p(y | \theta) + \log p(\theta) - \log p(y)
 \]

- **Adaptive RWMH:**
 \[
 \theta^* = \theta^{s-1} + z^s, \quad z^s \sim N(0, \Sigma^s)
 \]

 \[
 \alpha(\theta^{s-1}, \theta^*) = \min \left[\frac{p(\theta = \theta^* | y)}{p(\theta = \theta^{s-1} | y)}, 1 \right] \rightarrow 23.4\%
 \]

- **Geweke’s convergence diagnostic:**
 \[
 CD = \frac{\widehat{E}[\theta_1] - \widehat{E}[\theta_2]}{\hat{\sigma}_1 / \sqrt{N_1} + \hat{\sigma}_2 / \sqrt{N_2}} \rightarrow N(0, 1)
 \]
Kalman filter

- **state-space form:**

 \[
 y_t = Z\alpha_t + Ax_t + \varepsilon_t, \varepsilon_t \sim N(0, H) \quad (9a)
 \]

 \[
 \alpha_t = T\alpha_{t-1} + \eta_t, \eta_t \sim N(0, Q) \quad (9b)
 \]

- **Kalman filter:** estimate the distribution of \(\alpha_t\), for \(t = 1, \ldots, T\), conditional on \(Y_t = \{y_1, \ldots, y_t\}\) and \(X_t = \{x_1, \ldots, x_t\}\);

- **Kalman smoother:** estimate the distribution of \(\alpha_t\), for \(t = 1, \ldots, T\), conditional on \(Y_T = \{y_1, \ldots, y_T\}\) and \(X_T = \{x_1, \ldots, x_T\}\).
Data and transformations

- y_t: quarterly seasonally adjusted real GDP (NIS), in log;
- π_t: q-o-q inflation rate, compounded from quarterly CPI as average of the corresponding monthly CPI (NIS), seasonally adjusted, in log and first difference;
- u_t: quarterly seasonally adjusted unemployment rate, ILO definition (Eurostat);
- Δs_t: quarterly real modification of RON against EUR, obtained from average daily nominal exchange rate (NBR), quarterly CPI defined above and a similar HICP (Eurostat); $\Delta s_t > 0$ indicates a real depreciation.

Data covers 2000Q1:2011Q4 period
<table>
<thead>
<tr>
<th>Coeff. Distribution</th>
<th>Prior mean</th>
<th>Prior st.dev</th>
<th>Prior mode</th>
<th>Posterior mean</th>
<th>Posterior st.dev</th>
<th>95% BCI</th>
<th>Geweke’s CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>Gamma</td>
<td>0.5</td>
<td>0.15</td>
<td>1.082</td>
<td>0.104</td>
<td>0.70 — 1.67</td>
<td>-0.26*</td>
</tr>
<tr>
<td>θ_{11}</td>
<td>Normal</td>
<td>0.5</td>
<td>0.5</td>
<td>1.725</td>
<td>0.075</td>
<td>1.54 — 2.53</td>
<td>-2.29***</td>
</tr>
<tr>
<td>ω</td>
<td>Normal</td>
<td>2.5</td>
<td>0.15</td>
<td>2.015</td>
<td>0.006</td>
<td>1.61 — 2.07</td>
<td>0.53*</td>
</tr>
<tr>
<td>λ</td>
<td>Normal</td>
<td>0.5</td>
<td>0.2</td>
<td>1.000</td>
<td>0.002</td>
<td>0.82 — 1.13</td>
<td>-1.71**</td>
</tr>
<tr>
<td>γ</td>
<td>Normal</td>
<td>1</td>
<td>0.4</td>
<td>0.832</td>
<td>0.108</td>
<td>0.16 — 1.33</td>
<td>-0.80*</td>
</tr>
<tr>
<td>δ</td>
<td>Beta</td>
<td>0.925</td>
<td>0.05</td>
<td>0.937</td>
<td>0.041</td>
<td>0.81 — 0.98</td>
<td>-0.33*</td>
</tr>
<tr>
<td>$\sigma(\varepsilon_y)$</td>
<td>InvGamma</td>
<td>0.4</td>
<td>0.04</td>
<td>0.427</td>
<td>0.033</td>
<td>0.36 — 0.50</td>
<td>0.17*</td>
</tr>
<tr>
<td>$\sigma(\varepsilon_u)$</td>
<td>InvGamma</td>
<td>0.1</td>
<td>0.009</td>
<td>0.224</td>
<td>0.025</td>
<td>0.20 — 0.26</td>
<td>-0.21*</td>
</tr>
<tr>
<td>$\sigma(\varepsilon_\pi)$</td>
<td>InvGamma</td>
<td>0.5</td>
<td>0.04</td>
<td>0.649</td>
<td>0.048</td>
<td>0.57 — 0.74</td>
<td>-0.20*</td>
</tr>
<tr>
<td>$\sigma(\eta^1)$</td>
<td>InvGamma</td>
<td>0.008</td>
<td>0.004</td>
<td>0.006</td>
<td>0.002</td>
<td>0.003 — 0.020</td>
<td>0.03*</td>
</tr>
<tr>
<td>$\sigma(\eta^2)$</td>
<td>InvGamma</td>
<td>0.013</td>
<td>0.004</td>
<td>0.013</td>
<td>0.004</td>
<td>0.009 — 0.029</td>
<td>-0.04*</td>
</tr>
<tr>
<td>$\sigma(\eta^3)$</td>
<td>InvGamma</td>
<td>0.02</td>
<td>0.003</td>
<td>0.022</td>
<td>0.003</td>
<td>0.016 — 0.030</td>
<td>0.10*</td>
</tr>
<tr>
<td>$\sigma(\eta^4)$</td>
<td>InvGamma</td>
<td>0.2</td>
<td>0.025</td>
<td>0.310</td>
<td>0.050</td>
<td>0.25 — 0.40</td>
<td>0.12*</td>
</tr>
</tbody>
</table>
Valeriu Nalban
DOFIN
June 2012

Prior and posterior distributions (2)
Unobserved components (2)

Output (y) gap decomposition

Unemployment rate (u) gap decomposition

Inflation rate (π) gap decomposition

Valeriu Nalban DOFIN June 2012
Reliability of estimated states (1)

Unemployment rate gap

Output gap

Inflation rate gap

Kalman

HP, lambda=1600

CF, Low=6, High=32
Reliability of estimated states (2)

End-point problem

Kalman
HP, lambda=1600
HP, lambda=1600, EC forecasts
CF, Low=6, High=32
CF, Low=6, High=32, EC forecasts

Output gap

NAIRU

Estimated
DG ECFIN

Estimated
DG ECFIN
Correlation coefficients between gaps and lags/leads of inflation change

Unemployment gap – quarterly inflation change

Output gap – quarterly inflation change

Unemployment gap – annual inflation change

Output gap – annual inflation change

Kalman HP, lambda=1600 CF, Low=6, High=32
Conclusions

- Estimated current cyclical position (positive unemployment gap and strong negative output gap) indicates need for deeper structural reforms in order to:
 - boost economic activity;
 - equilibrate labour market.

- Current inflation rate seems to be at equilibrium as NBR met inflation target for 2011.

- Model captures effects of economic crisis:
 - growth rate of potential output halves, from 5.0% in 2001-2008 to 2.4% in 2009-2011;
 - NRU is still on an upward shape.

- Persistence effects are important for unemployment rate dynamics.

- Gaps are (potentially) useful in forecasting inflation.

Annex: Testing assumptions

<table>
<thead>
<tr>
<th>OLS relation</th>
<th>Net wages’ inflation = 1.86 + 0.94 · CPI inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob.</td>
<td>[0.01] [0.00]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wald test</th>
<th>Net wages’ inflation = const. + 1 · CPI inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2 Prob.</td>
<td>[0.73]</td>
</tr>
</tbody>
</table>

Tab. A1. Wald test for coefficients restriction (1)

<table>
<thead>
<tr>
<th>OLS relation</th>
<th>CPI inflation at t = 0.13 + 0.91 · CPI inflation at $t-1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob.</td>
<td>[0.54] [0.00]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wald test</th>
<th>CPI inflation at t = 0 + 1 · CPI inflation at $t-1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2 Prob.</td>
<td>[0.09]</td>
</tr>
</tbody>
</table>

Tab. A2. Wald test for coefficients restriction (2)

<table>
<thead>
<tr>
<th>t-Statistic</th>
<th>-2.42</th>
<th>Prob.</th>
<th>[0.14]</th>
</tr>
</thead>
</table>

Tab. A3. Augmented Dickey-Fuller test for quarterly inflation rate
Annex: Reduced-form measurement equations

\[
\begin{pmatrix}
y_t \\
u_t \\
\pi_t
\end{pmatrix}
=
\begin{pmatrix}
y^*_t \\
u^*_t \\
\pi^*_t
\end{pmatrix}
+
\begin{pmatrix}
\omega \lambda \\
-\frac{\lambda}{\theta_{11}} \\
\omega \theta_{11} \\
-\omega \omega_{11} \\
-\omega \\
\omega \lambda \gamma \\
\frac{\alpha}{\alpha} \\
\frac{\alpha}{\alpha} \\
\frac{\alpha}{\alpha}
\end{pmatrix}
\times
\begin{pmatrix}
\frac{\alpha}{(\theta_1 + \theta_{11}) \lambda} \\
\frac{\alpha}{\theta_{11}} \\
\frac{\alpha}{\omega \theta_{11} \lambda} \\
\frac{1}{\alpha} \\
\frac{\alpha}{\alpha} \\
\frac{\alpha}{(\theta_1 + \theta_{11}) \lambda \gamma}
\end{pmatrix}
\times
\begin{pmatrix}
y_{t-1} - y^*_{t-1} \\
u_{t-1} - u^*_{t-1} \\
\pi_{t-1} - \pi^*_{t-1} \\
\Delta s_t
\end{pmatrix}
+
\begin{pmatrix}
y_t \\
u_t \\
\pi_t
\end{pmatrix}
\]

where \(\alpha = \theta_1 + \theta_{11} + \lambda \omega > 0 \)
Annex: Neighbourhoods around the optimum

\begin{align*}
\text{THETA1} & \times 10^5 \\
1.04, 1.06, 1.08, 1.1, 1.12 \\
\text{THETA11} & \times 10^5 \\
1.65, 1.7, 1.75, 1.8 \\
\text{OMEGA} & \times 10^5 \\
1.95, 2, 2.05, 2.1 \\
\text{LAMBDA} & \times 10^5 \\
0.96, 0.98, 1, 1.02, 1.04 \\
\text{GAMMA} & \times 10^5 \\
0.8, 0.82, 0.84, 0.86 \\
\text{DELTA} & \times 10^5 \\
0.9, 0.92, 0.94, 0.96, 0.98 \\
\text{std_eps_y} & \times 10^5 \\
0.62, 0.64, 0.66, 0.68 \\
\text{std_eps_u} & \times 10^5 \\
0.41, 0.42, 0.43, 0.44 \\
\text{std_eps_p} & \times 10^5 \\
0.215, 0.22, 0.225, 0.23 \\
\text{std_shock_1} & \times 10^5 \\
5.6, 5.8, 6 \\
\text{std_shock_2} & \times 10^5 \\
0.0125, 0.013, 0.0135 \\
\text{std_shock_3} & \times 10^5 \\
0.021, 0.0215, 0.022, 0.0225 \\
\text{std_shock_4} & \times 10^{-3} \\
0.3, 0.31, 0.32
\end{align*}
Annex: Convergence of the chains

Coefficients convergence, each 500th simulation, no burning

THETA1
mean=1.150, std=0.249
mode=1.281, median=1.138

THETA11
mean=1.987, std=0.259
mode=1.692, median=1.960

OMEGA
mean=1.835, std=0.116
mode=1.771, median=1.830

LAMBDA
mean=0.954, std=0.093
mode=0.851, median=0.924

GAMMA
mean=0.771, std=0.292
mode=0.624, median=0.780

DELTA
mean=0.913, std=0.046
mode=0.926, median=0.919

std_eps_y
mean=0.428, std=0.035
mode=0.408, median=0.425

std_eps_u
mean=0.225, std=0.016
mode=0.220, median=0.225

std_shock_1
mean=0.008, std=0.004
mode=0.005, median=0.007

std_shock_2
mean=0.016, std=0.005
mode=0.009, median=0.015

std_shock_3
mean=0.022, std=0.004
mode=0.023, median=0.022

std_shock_4
mean=0.320, std=0.039
mode=0.290, median=0.318

Acceptance rate

Geweke Z, 0.2vs0.5, 2000th
Annex: Trend components

NRU

Inflation rate trend

Potential output

Kalman
HP, lambda=1600
CF, Low=6, High=32
Actual
Annex: Alternative measures for equilibrium unemployment rate

Alternative measures for unemployment rate

Valeriu Nalban DOFIN June 2012