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     Purpose of the paper 

•  To calibrate stochastic volatility models with different   
    characteristics using Bayesian inference techniques 
 
•  To analyze in a comparative manner the predictive    
    ability of the models  
 
•  To perform empirical computations for four blue-chips  
     indices from CEE capital markets: BET (Romania),  
     PX (Czech Republic), WIG20 (Poland), ATX (Austria). 
 
•   To draw conclusions based on results 
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     Volatility in economics 

 
 

Definition: “The extent to which the price of a security or commodity, or the level of a 
market, interest rate or currency, changes over time. High volatility implies rapid and large 
upward and downward movements over a relatively short period of time; low volatility 
implies much smaller and less frequent changes in value.” (Neil Shepard) 

 
 

General  
volatility  
measures 

 
 Standard deviation 

 
 Beta 

 
 

General approach:  
According to “Portfolio Selection Theory” (Markowitz) and CAPM (Sharpe),  higher 
expected returns can only occur with correspondingly higher risk.  
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     Importance of volatility forecasting 

 
 

An accurate forecast of volatility is essential to: 
• optimal asset allocation 
• derivatives pricing  
• dynamic hedging 
• portfolio risk management 
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     Stochastic volatility models 

 
 

Neil Shepard: “Stochastic volatility (SV) is the main concept used in 
the fields of financial economics and mathematical finance to deal 
with the endemic time-varying volatility and codependence found in 
financial markets.” 

 
 

SV => one approach to resolve a shortcoming of the Black-Scholes model 

 
 

SV preset the ability of the stochastic volatility models to capture some 
important properties of financial time series:       

      •   Volatility clustering and persistence 

      •   Thick tails 

      •   Leverage effect 

      •   Extreme events in returns 
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     Stochastic volatility model 

 SV model is often formulated in terms of s. d. e.: 

𝑑𝑠 𝑡 =  𝜎 𝑡 ∗ 𝑑𝐵1 𝑡                                                    

𝑑 ln𝜎2 𝑡 =  𝛼 +  𝛽 ∗ 𝑙𝑛 𝜎2 𝑡 ∗ 𝑑𝑡 +  𝜂 ∗  𝑑𝐵2(𝑡) 

        𝑐𝑜𝑟𝑟 𝑑𝐵1 𝑡 ,  𝑑𝐵2 𝑡 = 0 

𝑠 𝑡 + 1 − 𝑠 𝑡 = 𝑦(𝑡) 

𝐵1 𝑡 + 1 − 𝐵1 𝑡 = 𝑢𝑡 

𝐵2 𝑡 + 1 − 𝐵2 𝑡 = η𝑡 

1 +  β = ϕ 

𝑙𝑛 𝜎2 𝑡 =  ℎ𝑡 

μ =  α (1 + ϕ) 

 

 
𝑦𝑡 = 𝜎𝑡 𝑢𝑡  = exp ℎ𝑡 / 2 𝑢𝑡     

ℎ𝑡+1 =  𝜇 +  𝜙 ∗  ℎ𝑡 −  𝜇 + 𝜎𝜂𝜂𝑡+1   

𝑢𝑡  ~ 𝑁 0, 1  𝑖. 𝑖. 𝑑. ,   𝜂𝑡 ~ 𝑁 0, 1  𝑖. 𝑖. 𝑑.  

 

 Using the notations         Euler-Maruyama Approx.            Discrete SV model 
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     Discrete stochastic volatility models 

𝑦𝑡|ℎ𝑡 = 𝜎𝑡 𝑢𝑡 =  exp
ℎ𝑡
2
∗ 𝑢𝑡   ,  𝑢𝑡  ~ 𝑁 0, 1  𝑖. 𝑖. 𝑑.  

ℎ𝑡+1|ℎ𝑡, 𝜇, 𝜙, 𝜎𝜂 =  𝜇 +  𝜙 ∗  ℎ𝑡 −  𝜇 + 𝜎𝜂𝜂𝑡+1 , 𝜂𝑡 ~ 𝑁 0, 1  𝑖. 𝑖. 𝑑. 

𝑡 = 1,… , 𝑇        ℎ1~ 𝑁  𝜇 ,
𝜎𝜂
2

1 − 𝜙2
        𝑐𝑜𝑟𝑟  𝑢

𝑡  
, 𝜂𝑡 =  0          | 𝜙 |  <  1  

 
  
 

To characterize the “Excess kurtosis”, the SVt model is defined: 

𝑢𝑡  ~ 𝑡𝑘  𝑖. 𝑖. 𝑑.,    𝑡 = 1,… , 𝑇 

 
 

SV 
 
 

Volatility clustering + Leptokurtic distribution  

 
 

Excess kurtosis 

 
 

SV 

 
 

SVt 
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     Discrete stochastic volatility models 

The standard SV model is extended and SVL is obtained: 

𝑦𝑡|ℎ𝑡 , 𝜌 = exp ℎ𝑡 / 2 ∗  𝑢𝑡                  𝑡 = 1,… , 𝑇 

ℎ𝑡+1|ℎ𝑡, 𝜇, 𝜙, 𝜎𝜂  =  𝜇 +  𝜙 ∗  ℎ𝑡 −  𝜇 + 𝜎𝜂𝜂𝑡+1 

 
𝑢𝑡 
 𝜂𝑡
  ~ 𝑁    

0
0
   ,  
1 𝜌
𝜌 1
  

 
 

Leverage effect 
 
 

changes in the asset prices tend to be negatively 
correlated with changes in volatility of assets 

 
 

SVL 
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     Discrete stochastic volatility models 

𝑦𝑡 = 𝑘𝑡𝑞𝑡      +      exp ℎ𝑡 / 2 𝑢𝑡  

ℎ𝑡 =  𝜇 +  𝜙 ℎ𝑡−1 −  𝜇 + 𝜂𝑡 

𝑘𝑡 ~ 𝑁 𝛼𝑘 , 𝛽𝑘  

 
𝑢𝑡 
 𝜂𝑡
  ~ 𝑁    

0
0
   ,  

1 𝜌 𝜎𝜂
𝜌 𝜎𝜂  𝜎𝜂

  

𝑞𝑡 ~ 𝐵𝑒𝑟𝑛 к  

Jump 
Component 

 
 

Continuous 
component 

 
 

Financial crisis (2008) 
European debt crisis (2011) 
 

 
 

importance of modeling extreme events  
in the financial time series 

 
 

SVLJ 
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     Estimation method 

𝑝  𝑦 , 𝜃 =  𝑝  𝜃    ∗     𝑝 𝑦  𝜃 ) = 𝑝 ( 𝑦 ) ∗ 𝑝( 𝜃 | 𝑦)  

𝑝  𝜃 | 𝑦 =
𝑝  𝜃 ∗  𝑝 𝑦  𝜃 ) 

 𝑝  𝜃 ∗  𝑝 𝑦  𝜃 ) 𝑑𝜃
∝ 𝑝  𝜃 ∗  𝑝 𝑦  𝜃 ) 

𝑝  𝜇, 𝜙, 𝜎𝜂
2, ℎ1, … , ℎ𝑛 | 𝑦1, … , 𝑦𝑛 ∝  𝑝 𝜇  𝑝 𝜙  𝑝 𝜎𝜂

2   𝑝 ℎ𝑡  ℎ𝑡−1,

𝑛

𝑡=1

  𝜇, 𝜙, 𝜎𝜂
2)  𝑝 𝑦𝑡  ℎ𝑡)  

𝑛

𝑡=1

 
 
 

SV 

 
 

Joint probability  
distribution 

 
 

Joint posterior  
distribution 

Bayes Theorem 𝜃 = ( 𝜇, 𝜙, 𝜎𝜂 , 𝜌 , 𝑘, ℎ ) 𝑦 = (𝑦1, … , 𝑦𝑛) 

Likelihood Priors 

𝑝  ℎ𝑡 | ℎ𝑡−1, 𝜇, 𝜙, 𝜎𝜂
2  𝑁(𝜇 + ℎ𝑡−1 , 𝜎𝜂

2 )  

𝑝 𝑦𝑡  ℎ𝑡) 𝑁( 0 , exp(ℎ𝑡) ) 
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     Estimation method 

 
 

Joint posterior  
distribution SVt 

𝑝 𝑦𝑡  ℎ𝑡) 𝑡( 0 , exp ℎ𝑡 , 𝑘 ) Likelihood 

Prior distribution for 𝒌, the degrees of freedom.  

 
 

Joint posterior  
distribution SVL 

𝑦𝑡  ~ 𝑁 (
𝜌

𝜎𝜂
exp
ℎ𝑡
2
ℎ𝑡+1 −  𝜇 −  𝜙 ℎ𝑡 −  𝜇 , exp ℎ𝑡 ∗  1 − 𝜌

2 ) 

ℎ𝑡+1~ 𝑁 ( 𝜇 +  𝜙 ℎ𝑡 −  𝜇 , 𝜎𝜂
2) 

𝜇 ~ 𝑁 0, 25  

𝜙∗ ~ 𝐵𝑒𝑡𝑎 20, 1.5 , 𝜙 = 2𝜙 − 1 

𝜎𝜂
2 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(2.5, 0.025) 

𝜌 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1) 

 
 

Apriori 
distributions 

(According to Harvey and Shepard) 
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     Estimation method 

 
 

Not possible to derive an analytic  
expression for the posterior distribution 

of parameters and latent states 

 
 

Gibbs Sampling 
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     Data description 

yt = logarithmic returns of blue-chips indices from CEE stock exchanges 
    = ln( St / St-1 ) 

 
 

Index Stock exchange 
Stocks 

aggregated 
Period Observations Source 

BET Bucharest Stock Exchange 10 Jan 3, 2006 - Mar 31, 2015 2319 Bloomberg 

PX Prague Stock Exchange 14 Jan 2, 2006 - Mar 31, 2015 2322 Bloomberg 

WIG20 Warsaw Stock Exchange 20 Jan 2, 2006 - Mar 31, 2015 2314 Bloomberg 

ATX Vienna Stock Exchange 20 Jan 2, 2006 - Mar 31, 2015 2338 Bloomberg 

 
 

                     Descriptive statistics for the indices' returns time series 

Indicator BET PX WIG20 ATX 

Mean 1,59E-05 -0,0001497 -5,08E-05 -0,000164031 

Maximum 0,1284662 0,1236405 0,08154839 0,1202104 

Minimum -0,1182396 -0,1618547 -0,08442765 -0,1025264 

Std. Dev. 0,01664129 0,01563632 0,01571566 0,01724652 

Skewness -0,4628239 -0,4989881 -0,2761839 -0,2255455 

Kurtosis 8,497053 14,363070 3,043631 5,374535 

Jarque-Bera 7072,472 20106,03 925,3018 2840,089 

P-value 0,00000 0,00000 0,00000 0,00000 
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     Data features – Normal density test 

Positive excess kurtosis confirms the usual leptokurtic  
distributions of stock prices’ returns.  

Log returns distributions vs. Normal distributions 
(Source: own computes) 

 

QQ plots for the log returns 
(Source: own computes) 
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     Data features – Heteroskedasticity 

Time series do not present constant variance over time,  
which rises the need to model the data in a time-varying framework.  

Logarithmic returns BET 

V
al

u
es

 

Dates (yyyy/mm/dd) 

Logarithmic returns PX 

V
al

u
es

 

Dates (yyyy/mm/dd) 

Logarithmic returns WIG20 

V
al

u
es

 

Dates (yyyy/mm/dd) 

Logarithmic returns ATX 

V
al

u
es

 

Dates (yyyy/mm/dd) 
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     Data features – Stationarity tests 

 
 

  
BET PX WIG20 ATX 

ADF test 1 1 1 1 

p-value 0.01 0.01 0.01 0.01 

test statistic -11.2597 -11.7924 -13.5123 -13.01 

KPSS test 0 0 0 0 

p-value 0.1000 0.1000 0.1000 0.1000 

test statistic 0.1812 0.073 0.0599 0.0988 

Augmented Dickey Fuller (ADF) and Kwiatokski-Phillips-Schmidts-Shin Unit Root 
(KPSS) tests have opposite null hypothesis, which strengthens the result that all the 
five data series are stationary. 

Results of ADF and KPSS tests - own computes (R output) 
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     Results and interpretations 

Results of estimations for BET – SV model – Source: own computes (R output) 



Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking 
2015 

     Results and interpretations 

Index Param Mean SD 5% 50% 95% 

BET μ -8.996 0.1872 -9.2997 -8.995 -8.698 

  Ф 0.962 0.0087 0.9469 0.962 0.975 

  σ 0.326 0.0302 0.2783 0.326 0.378 

PX μ -9.045 0.1936 -9.3682 -9.038 -8.741 

  Ф 0.976 0.0065 0.9642 0.976 0.986 

  σ 0.212 0.0213 0.1796 0.210 0.249 

WIG20 μ -8.797 0.3066 -9.2917 -8.775 -8.379 

  Ф 0.990 0.0040 0.9830 0.990 0.996 

  σ 0.122 0.0146 0.0985 0.121 0.146 

ATX μ -8.725 0.2601 -9.127 -8.704 -8.360 

  Ф 0.984  0.0051   0.976  0.985 0.992 

  σ 0.160 0.0184 0.132 0.159 0.192 

Estimated parameters – SV model   
(Source: own computes) 

Graphic of mean estimated volatilities – SV model 
(Source: own computes) 
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     Results and interpretations 

Estimated parameters – SVt model   
(Source: own computes) 

Graphic of mean estimated volatilities – SVt model 
(Source: own computes) 

 

Index Param Mean SD 5% 50% 95% 

BET μ -9.126 0.2012 -9.3932 -9.125 -8.781 

  Ф 0.967 0.0088 0.9431 0.967 0.981 

  σ 0.329 0.0362 0.2716 0.329 0.383 

  ν 13.446 1.8022 10.7002 12.446 17.871 

PX μ -9.063 0.1947 -9.3712 -9.058 -8.781 

  Ф 0.981 0.0071 0.9673 0.981 0.988 

  σ 0.217 0.0214 0.1798 0.212 0.252 

  ν 12.781 1.9231 9.6672 12.781 16.921 

WIG20 μ -8.823 0.3079 -9.2929 -8.824 -8.372 

  Ф 0.992 0.0040 0.9832 0.992 0.996 

  σ 0.123 0.0148 0.0995 0.123 0.151 

  ν 14.213 1.7891 11.6022 14.213 18.873 

ATX μ -8.726 0.2613 -9.140 -8.727 -8.374 

  Ф 0.987  0.0052   0.978  0.987 0.994 

  σ 0.161 0.0183 0.133 0.161 0.193 

  ν 14.344 1.7923 11.6301 14.344 18.875 
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     Results and interpretations 

Estimated parameters – SVL model   
(Source: own computes) 

Graphic of mean estimated volatilities – SVL model 
(Source: own computes) 

 

Index Param Mean SD 5% 50% 95% 

BET μ -9.012 0.1876 -9.3075 -9.012 -8.675 

  Ф 0.956 0.0067 0.9423 0.956 0.972 

  σ 0.321 0.0298 0.2781 0.321 0.376 

  ρ -0.1925 0.0755 -0.3371 -0.1925 -0.0471 

PX μ -9.062 0.2013 -9.3696 -9.061 -8.756 

  Ф 0.969 0.0062 0.9637 0.968 0.979 

  σ 0.213 0.0202 0.1799 0.211 0.251 

  ρ -0.2532 0.0821 -0.4012 -0.2531 -0,0721 

WIG20 μ -8.802 0.3081 -9.3012 -8.801 -8.391 

  Ф 0.989 0.0042 0.9829 0.990 0.997 

  σ 0.121 0.0147 0.0983 0.121 0.147 

  ρ -0.2103 0.0798 -0.3451 -0.2102 -0.052 

ATX μ -8.743 0.2612 -9.131 -8.743 -8.365 

  Ф 0.986  0.0053   0.975 0.986 0.993 

  σ 0.161 0.0185 0.131 0.160 0.193 

  ρ -0.2521 0.0807 -0.3821 -0.2520 -0.064 
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     Results and interpretations 

Estimated parameters – SVLJ model   
(Source: own computes) 

Graphic of mean estimated volatilities – SVLJ model 
(Source: own computes) 

 

β𝑘 

β𝑘 

Index Parameter Mean SD 5% 50% 95% 

BET μ -8.942 0.1857 -9.2325 -8.943 -8.597 

  Ф 0.965 0.0083 0.9452 0.965 0.972 

  σ 0.317 0.0298 0.2778 0.317 0.373 

  ρ -0.2015 0.0758 -0.3378 -0.2015 -0.0463 

  αk -0.0055 2,90E-05 -0.006 -0.0054 -0.004 

  β𝑘  0.031 6,60E-03 0.020 0.031 0.045 

  κ 0.011 4,10E-03 0.003 0.0111 0.020 

PX μ -9.061 0.1949 -9.3711 -9.061 -8.782 

  Ф 0.979 0.0070 0.9672 0.979 0.989 

  σ 0.218 0.0213 0.1797 0.217 0.253 

  ρ -0.2542 0.0823 -0.4014 -0.2541 -0.0722 

  αk -0.0065 3,30E-05 -0.007 -0.0065 -0.006 

  β𝑘  0.036 7,20E-03 0.019 0.036 0.051 

  κ 0.014 4,40E-03 0.004 0.0139 0.021 

WIG20 μ -8.802 0.3081 -9.3012 -8.801 -8.391 

  Ф 0.989 0.0042 0.9829 0.990 0.997 

  σ 0.121 0.0147 0.0983 0.121 0.147 

  ρ -0.2182 0.0818 -0.3469 -0.2181 -0.061 

  αk -0.0074 3,50E-05 -0.008 -0.0074 -0.007 

  β𝑘  0.042 7,20E-03 0.024 0.042 0.052 

  κ 0.017 4,60E-03 0.003 0.017 0.023 

ATX μ -8.743 0.2612 -9.131 -8.743 -8.365 

  Ф 0.986  0.0053   0.975 0.986 0.993 

  σ 0.161 0.0185 0.131 0.160 0.193 

  ρ -0.2531 0.0812 -0.3817 -0.253 -0.065 

  α -0.0049 2,30E-05 -0.006 -0.0049 -0.004 

  β𝑘  0.029 5,60E-03 0.018 0.029 0.043 

  κ 0.009 3,90E-03 0.002 0.009 0.018 

β𝑘 

β𝑘 
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     Results and interpretations 

Log returns for BET and PX  
(Source: own computes) 

Estimated jumps and their size for BET and PX 
(Source: own computes) 

 

β𝑘 

β𝑘 

β𝑘 

β𝑘 
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     Results and interpretations 

Log returns for BET and PX  
(Source: own computes) 

Estimated jumps and their size for BET and PX 
(Source: own computes) 

 

β𝑘 

β𝑘 

β𝑘 

β𝑘 



Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking 
2015 

     Results and interpretations 

VaR 1% significance level, 1 day ahead volatility forecast, computation for BET – SV, SVt, SVL, SVLJ 
(Source: Own Computations) 

β𝑘 

β𝑘 

β𝑘 

β𝑘 

VaR 1% significance level, 1 day ahead volatility forecast, computation for PX – SV, SVt, SVL, SVLJ 
(Source: Own Computations) 
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     Results and interpretations 

β𝑘 

β𝑘 

β𝑘 

β𝑘 

VaR 1% significance level, 1 day ahead volatility forecast, computation for WIG20 – SV, SVt, SVL, SVLJ 
(Source: Own Computations) 

VaR 1% significance level, 1 day ahead volatility forecast, computation for ATX – SV, SVt, SVL, SVLJ 
(Source: Own Computations) 
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     Results and interpretations 

β𝑘 

β𝑘 

β𝑘 

β𝑘 

 
 

Index Model 
Limits-violations 

(% of total sample) 

BET SV 0.87% 

  SVt 0.79% 

  SVL 0.67% 

  SVLJ 0.42% 

PX SV 0.92% 

  SVt 0.81% 

  SVL 0.72% 

  SVLJ 0.45% 

WIG20 SV 0.81% 

  SVt 0.74% 

  SVL 0.67% 

  SVLJ 0.39% 

ATX SV 0.76% 

  SVt 0.69% 

  SVL 0.58% 

  SVLJ 0.32% 

 
 

Comparing method: 
Testing the violation of the 
VaR limits given by the 
number of excesses 
outside the confidence 
interval. 
 
VaR computation: 1% 
significance level, one-day-
ahead volatility forecast. 
 
 
Best results are obtained 
for the SVLJ model. 
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     Results and interpretations 

β𝑘 

β𝑘 

β𝑘 

β𝑘 

 
 

 
 

 
𝑦 – the data, 𝜃 – the parameters 
 
Deviance     𝐷 𝜃 =  −2 ∗ log(𝑝 𝑦 𝜃 ) 
 
Expectation          𝐷 = 𝐸 𝐷 𝜃  
 
Effective No. Params. 𝑝𝐷 = 𝐷 −  𝐷(𝜃 ) 
 
 

Deviance Information Criterion 
 

𝐷𝐼𝐶 =  𝑝𝐷 + 𝐷  
 

Index Model DIC 

BET SV -11615.6 

  SVt -11725.3 

  SVL -11775.8 

  SVLJ -11975.7 

PX SV -12248.8 

  SVt -12367.1 

  SVL -12512.9 

  SVLJ -12911.4 

WIG20 SV -13242.1 

  SVt -13312.4 

  SVL -13512.6 

  SVLJ -14121.7 

ATX SV -11621.7 

  SVt -11748.1 

  SVL -11917.6 

  SVLJ -12218.3 

(Source: Own Computations – R2OpenBugs) 
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     Results and interpretations 

β𝑘 

β𝑘 

β𝑘 

β𝑘 

Normal Q-Q for standardized residuals 
(Source: Own Computations – R2OpenBugs) 

SV SVt SVL SVLJ 

BET 

PX 

WIG20 

ATX 
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     Conclusions 

β𝑘 

β𝑘 

β𝑘 

β𝑘 

 
 

The SVLJ model obtains the best performances in calibrating the data in 
comparison with SV, SVt, and SVL on all datasets: 
    -  Smallest number of violations according to VaR; 
    -  Best results according to DIC; 
    -  Interpretation of Normal Q-Q for standardized residuals; 
    -  Best representation of volatilities in turbulent periods.  
 
Further research: 
    -   considering models with other different particularities such as: markov 
regime switching stochastic volatility, models with jumps not only in returns 
but also in volatility; multivariate stochastic volatility models; 
    -   applying the model for different datasets: stocks, exchange rates. 
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