Stochastic volatility model under Bayesian Approach

Coordinator, Prof. Ph. D. Moisă Altăr

MSc. Student, Gavrilă Lucian-Ionuț

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Presentation structure

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Purpose of the paper

- To calibrate stochastic volatility models with different characteristics using Bayesian inference techniques
- To analyze in a comparative manner the predictive ability of the models
- To perform empirical computations for four blue-chips indices from CEE capital markets: BET (Romania), PX (Czech Republic), WIG20 (Poland), ATX (Austria).
- To draw conclusions based on results

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Volatility in economics

Definition: "The extent to which the price of a security or commodity, or the level of a market, interest rate or currency, changes over time. High volatility implies rapid and large upward and downward movements over a relatively short period of time; low volatility implies much smaller and less frequent changes in value." (Neil Shepard)

General approach:

According to "Portfolio Selection Theory" (Markowitz) and CAPM (Sharpe), higher expected returns can only occur with correspondingly higher risk.

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking 2015

Importance of volatility forecasting

An accurate forecast of volatility is essential to:

- optimal asset allocation
- derivatives pricing
- dynamic hedging
- portfolio risk management

Neil Shepard: "Stochastic volatility (SV) is the main concept used in the fields of financial economics and mathematical finance to deal with the endemic time-varying volatility and codependence found in financial markets."

SV => one approach to resolve a shortcoming of the Black-Scholes model

SV preset the ability of the stochastic volatility models to capture some important properties of financial time series:

- Volatility clustering and persistence
- Thick tails
- Leverage effect
- Extreme events in returns

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Stochastic volatility model

SV model is often formulated in terms of s. d. e.:

$$ds(t) = \sigma(t) * dB_1(t)$$

$$d \ln \sigma^2(t) = \alpha + \beta * \ln \sigma^2(t) * dt + \eta * dB_2(t)$$

$$corr(dB_1(t), \ dB_2(t)) = 0$$

Using the notations 💠 Euler-Maruyama Approx. 🛛 🔿 Discrete SV model

$$s(t+1) - s(t) = y(t)$$

$$B_{1}(t+1) - B_{1}(t) = u_{t}$$

$$B_{2}(t+1) - B_{2}(t) = \eta_{t}$$

$$1 + \beta = \phi$$

$$\ln \sigma^{2}(t) = h_{t}$$

$$\mu = \alpha (1 + \phi)$$

$$y_{t} = \sigma_{t} u_{t} = \exp(h_{t} / 2) u_{t}$$

$$h_{t+1} = \mu + \phi * (h_{t} - \mu) + \sigma_{\eta} \eta_{t+1}$$

$$u_{t} \sim N(0, 1) i.i.d., \eta_{t} \sim N(0, 1) i.i.d.$$

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Discrete stochastic volatility models

$$\begin{aligned} \mathbf{sv} \\ y_t | h_t &= \sigma_t \, u_t \, = \, \exp\left(\frac{h_t}{2}\right) * \, u_t \ , \qquad u_t \sim N(0,1) \, i. \, i. \, d. \\ h_{t+1} | h_t, \mu, \phi, \sigma_\eta &= \, \mu + \, \phi * (\, h_t - \, \mu\,) + \, \sigma_\eta \eta_{t+1}\,, \qquad \eta_t \sim N(0,1) \, i. \, i. \, d. \\ t &= 1, \dots, T \qquad h_1 \sim N\left(\mu, \frac{\sigma_\eta^2}{1 - \phi^2}\right) \qquad corr(\, u_t, \eta_t\,) = \, 0 \qquad |\, \phi\,| \, < \, 1 \\ \end{aligned}$$

To characterize the "Excess kurtosis", the SVt model is defined:

SVt
$$u_t \sim t_k \ i. i. d., \qquad t = 1, ..., T$$

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Discrete stochastic volatility models

Leverage effect

changes in the asset prices tend to be negatively correlated with changes in volatility of assets

The standard SV model is extended and SVL is obtained:

$$y_t | h_t, \rho = \exp(h_t / 2) * u_t$$
 $t = 1, ..., T$

SVL

$$h_{t+1}|h_t, \mu, \phi, \sigma_{\eta} = \mu + \phi * (h_t - \mu) + \sigma_{\eta}\eta_{t+1}$$

$$\begin{pmatrix} u_t \\ \eta_t \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

Discrete stochastic volatility models

Financial crisis (2008) European debt crisis (2011)

importance of modeling **extreme events** in the financial time series

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Estimation method

Joint posterior distribution **SVt**

Prior distribution for *k*, the **degrees of freedom**.

Likelihood $p(y_t | h_t) \implies t(0, \exp(h_t), k)$

Joint posterior distribution **SVL**

$$y_t \sim N\left(\left(\frac{\rho}{\sigma_{\eta}}\right) \exp\left(\frac{h_t}{2}\right)(h_{t+1} - \mu - \phi(h_t - \mu)), \exp(h_t) * (1 - \rho^2)\right)$$
$$h_{t+1} \sim N\left(\mu + \phi(h_t - \mu), {\sigma_{\eta}}^2\right)$$

(According to Harvey and Shepard)

Apriori distributions $\mu \sim N(0, 25)$ $\phi^* \sim Beta(20, 1.5), \phi = 2\phi - 1$ $\sigma_{\eta}{}^2 \sim InverseGamma(2.5, 0.025)$ $\rho \sim Uniform(-1, 1)$

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Estimation method

Not possible to derive an analytic expression for the posterior distribution of parameters and latent states

Gibbs Sampling

- Initialize $h^{(0)}, \mu^{(0)}, \phi^{(0)}$ and $\sigma_{\eta}^{2^{(0)}}$
- For g = l, ..., G:
 - For t = 1, ..., T:

Sample $h_t^{(g)}$ from $p(h_t | y, h_{< t}^{(g)}, h_{> t}^{(g-1)}, \mu^{(g-1)}, \phi^{(g-1)}$ and $\sigma_{\eta}^{2^{(g-1)}}$).

- Sample $\sigma_{\eta}^{2^{(g)}}$ from $p(\sigma_{\eta}^{2} | y, h^{(g)}, \phi^{(g-1)})$
- Sample $\phi^{(g)}$ from $p(\phi | y, h^{(g)}, \sigma_{\eta}^{2^{(g)}}, \mu^{(g-1)})$
- Sample $\mu^{(g)}$ from $p(\mu | y, h^{(g)}, \phi^{(g)}, \sigma_{\eta}^{2^{(g)}})$

Data description

y_t = logarithmic returns of blue-chips indices from CEE stock exchanges = ln(S_t / S_{t-1})

Index	Stock exchange	Stocks aggregated	Period	Observations	Source
BET	Bucharest Stock Exchange	10	Jan 3, 2006 - Mar 31, 2015	2319	Bloomberg
РХ	Prague Stock Exchange	14	Jan 2, 2006 - Mar 31, 2015	2322	Bloomberg
WIG20	Warsaw Stock Exchange	20	Jan 2, 2006 - Mar 31, 2015	2314	Bloomberg
ATX	Vienna Stock Exchange	20	Jan 2, 2006 - Mar 31, 2015	2338	Bloomberg

Descriptive statistics for the indices' returns time series						
Indicator	BET	РХ	WIG20	ATX		
Mean	1,59E-05	-0,0001497	-5,08E-05	-0,000164031		
Maximum	0,1284662	0,1236405	0,08154839	0,1202104		
Minimum	-0,1182396	-0,1618547	-0,08442765	-0,1025264		
Std. Dev.	0,01664129	0,01563632	0,01571566	0,01724652		
Skewness	-0,4628239	-0,4989881	-0,2761839	-0,2255455		
Kurtosis	8,497053	14,363070	3,043631	5,374535		
Jarque-Bera	7072,472	20106,03	925,3018	2840,089		
P-value	0,00000	0,00000	0,00000	0,00000		

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Data features – Normal density test

Positive excess kurtosis confirms the usual leptokurtic distributions of stock prices' returns.

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Data features – Heteroskedasticity

Time series do not present constant variance over time, which rises the need to model the data in a time-varying framework.

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Data features – Stationarity tests

Augmented Dickey Fuller (ADF) and Kwiatokski-Phillips-Schmidts-Shin Unit Root (KPSS) tests have opposite null hypothesis, which strengthens the result that all the five data series are stationary.

	BET	РХ	WIG20	АТХ
ADF test	1	1	1	1
p-value	0.01	0.01	0.01	0.01
test statistic	-11.2597	-11.7924	-13.5123	-13.01
KPSS test	0	0	0	0
p-value	0.1000	0.1000	0.1000	0.1000
test statistic	0.1812	0.073	0.0599	0.0988

Results of ADF and KPSS tests - own computes (R output)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Results of estimations for BET – SV model – Source: own computes (R output)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Index	Param	Mean	SD	5%	50%	95%
BET	μ	-8.996	0.1872	-9.2997	-8.995	-8.698
	Φ	0.962	0.0087	0.9469	0.962	0.975
	σ	0.326	0.0302	0.2783	0.326	0.378
PX	μ	-9.045	0.1936	-9.3682	-9.038	-8.741
	Φ	0.976	0.0065	0.9642	0.976	0.986
	σ	0.212	0.0213	0.1796	0.210	0.249
WIG20	μ	-8.797	0.3066	-9.2917	-8.775	-8.379
	Φ	0.990	0.0040	0.9830	0.990	0.996
	σ	0.122	0.0146	0.0985	0.121	0.146
ATX	μ	-8.725	0.2601	-9.127	-8.704	-8.360
	Φ	0.984	0.0051	0.976	0.985	0.992
	σ	0.160	0.0184	0.132	0.159	0.192

Estimated parameters – SV model (Source: own computes)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Index	Param	Mean	SD	5%	50%	95%
BET	μ	-9.126	0.2012	-9.3932	-9.125	-8.781
	Φ	0.967	0.0088	0.9431	0.967	0.981
	σ	0.329	0.0362	0.2716	0.329	0.383
	ν	13.446	1.8022	10.7002	12.446	17.871
РХ	μ	-9.063	0.1947	-9.3712	-9.058	-8.781
	Φ	0.981	0.0071	0.9673	0.981	0.988
	σ	0.217	0.0214	0.1798	0.212	0.252
	ν	12.781	1.9231	9.6672	12.781	16.921
WIG20	μ	-8.823	0.3079	-9.2929	-8.824	-8.372
	Φ	0.992	0.0040	0.9832	0.992	0.996
	σ	0.123	0.0148	0.0995	0.123	0.151
	ν	14.213	1.7891	11.6022	14.213	18.873
ATX	μ	-8.726	0.2613	-9.140	-8.727	-8.374
	Φ	0.987	0.0052	0.978	0.987	0.994
	σ	0.161	0.0183	0.133	0.161	0.193
	v	14.344	1.7923	11.6301	14.344	18.875

Graphic of mean estimated volatilities – **SVt** model (Source: own computes)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Index	Param	Mean	SD	5%	50%	95%
BET	μ	-9.012	0.1876	-9.3075	-9.012	-8.675
	Φ	0.956	0.0067	0.9423	0.956	0.972
	σ	0.321	0.0298	0.2781	0.321	0.376
	ρ	-0.1925	0.0755	-0.3371	-0.1925	-0.0471
РХ	μ	-9.062	0.2013	-9.3696	-9.061	-8.756
	Φ	0.969	0.0062	0.9637	0.968	0.979
	σ	0.213	0.0202	0.1799	0.211	0.251
	ρ	-0.2532	0.0821	-0.4012	-0.2531	-0,0721
WIG20	μ	-8.802	0.3081	-9.3012	-8.801	-8.391
	Φ	0.989	0.0042	0.9829	0.990	0.997
	σ	0.121	0.0147	0.0983	0.121	0.147
	ρ	-0.2103	0.0798	-0.3451	-0.2102	-0.052
ATX	μ	-8.743	0.2612	-9.131	-8.743	-8.365
	Φ	0.986	0.0053	0.975	0.986	0.993
	σ	0.161	0.0185	0.131	0.160	0.193
	ρ	-0.2521	0.0807	-0.3821	-0.2520	-0.064

(Source: own computes)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Index	Parameter	Mean	SD	5%	50%	95%
BET	μ	-8.942	0.1857	-9.2325	-8.943	-8.597
	Φ	0.965	0.0083	0.9452	0.965	0.972
	σ	0.317	0.0298	0.2778	0.317	0.373
	ρ	-0.2015	0.0758	-0.3378	-0.2015	-0.0463
	α_k	-0.0055	2,90E-05	-0.006	-0.0054	-0.004
	$\sqrt{\beta_k}$	0.031	6,60E-03	0.020	0.031	0.045
	к	0.011	4,10E-03	0.003	0.0111	0.020
PX	μ	-9.061	0.1949	-9.3711	-9.061	-8.782
	Φ	0.979	0.0070	0.9672	0.979	0.989
	σ	0.218	0.0213	0.1797	0.217	0.253
	ρ	-0.2542	0.0823	-0.4014	-0.2541	-0.0722
	α_k	-0.0065	3,30E-05	-0.007	-0.0065	-0.006
	$\sqrt{\beta_k}$	0.036	7,20E-03	0.019	0.036	0.051
	к	0.014	4,40E-03	0.004	0.0139	0.021
WIG20	μ	-8.802	0.3081	-9.3012	-8.801	-8.391
	Φ	0.989	0.0042	0.9829	0.990	0.997
	σ	0.121	0.0147	0.0983	0.121	0.147
	ρ	-0.2182	0.0818	-0.3469	-0.2181	-0.061
	α_k	-0.0074	3,50E-05	-0.008	-0.0074	-0.007
	$\sqrt{\beta_k}$	0.042	7,20E-03	0.024	0.042	0.052
	к	0.017	4,60E-03	0.003	0.017	0.023
ATX	μ	-8.743	0.2612	-9.131	-8.743	-8.365
	Φ	0.986	0.0053	0.975	0.986	0.993
	σ	0.161	0.0185	0.131	0.160	0.193
	ρ	-0.2531	0.0812	-0.3817	-0.253	-0.065
	α	-0.0049	2,30E-05	-0.006	-0.0049	-0.004
	$\sqrt{\beta_k}$	0.029	5,60E-03	0.018	0.029	0.043
	к	0.009	3,90E-03	0.002	0.009	0.018

Estimated parameters – **SVLJ** model (Source: own computes)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

VaR 1% significance level, 1 day ahead volatility forecast, computation for BET – SV, SVt, SVL, SVLJ (Source: Own Computations)

VaR 1% significance level, 1 day ahead volatility forecast, computation for PX – SV, SVL, SVLJ (Source: Own Computations)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

VaR 1% significance level, 1 day ahead volatility forecast, computation for WIG20 – SV, SVL, SVLJ (Source: Own Computations)

VaR 1% significance level, 1 day ahead volatility forecast, computation for ATX – SV, SVL, SVLJ (Source: Own Computations)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Index	Model	Limits-violations (% of total sample)
BET	SV	0.87%
	SVt	0.79%
	SVL	0.67%
	SVLJ	0.42%
РХ	SV	0.92%
	SVt	0.81%
	SVL	0.72%
	SVLJ	0.45%
WIG20	SV	0.81%
	SVt	0.74%
	SVL	0.67%
	SVLJ	0.39%
ΑΤΧ	SV	0.76%
	SVt	0.69%
	SVL	0.58%
	SVLJ	0.32%

Comparing method:

Testing the violation of the VaR limits given by the number of excesses outside the confidence interval.

VaR computation: 1% significance level, one-day-ahead volatility forecast.

Best results are obtained for the SVLJ model.

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking 2015

Index	Model	DIC
BET	SV	-11615.6
	SVt	-11725.3
	SVL	-11775.8
	SVLJ	-11975.7
РХ	SV	-12248.8
	SVt	-12367.1
	SVL	-12512.9
	SVLJ	-12911.4
WIG20	SV	-13242.1
	SVt	-13312.4
	SVL	-13512.6
	SVLJ	-14121.7
ΑΤΧ	SV	-11621.7
	SVt	-11748.1
	SVL	-11917.6
	SVLJ	-12218.3

y - the data, θ - the parameters **Deviance** $D(\theta) = -2 * \log(p(y|\theta))$ **Expectation** $\overline{D} = E[D(\theta)]$ **Effective No. Params.** $p_D = \overline{D} - D(\overline{\theta})$

Deviance Information Criterion

$$DIC = p_D + \overline{D}$$

(Source: Own Computations – R2OpenBugs)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Normal Q-Q for standardized residuals (Source: Own Computations – R2OpenBugs)

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Conclusions

The SVLJ model obtains the best performances in calibrating the data in comparison with SV, SVt, and SVL on all datasets:

- Smallest number of violations according to VaR;
- Best results according to DIC;
- Interpretation of Normal Q-Q for standardized residuals;
- Best representation of volatilities in turbulent periods.

Further research:

- considering models with other different particularities such as: markov regime switching stochastic volatility, models with jumps not only in returns but also in volatility; multivariate stochastic volatility models;

- applying the model for different datasets: stocks, exchange rates.

References

- Bollersleva, T., Kretschmerb, U., Pigorschc, C., Tauchen, G., "A discrete-time model for daily S&P500 returns and realized variations: Jumps and leverage effects", *Journal of Finance*, 150(2), 2009, 151-166.
- Chapman&Hall Berg, A., R. Meyer and J. Yu (2004), "Deviance Information Criterion for comparing stochastic volatility models", *Journal of Business and Economic Statistics*, 22(1), 107-120.
- Chib, S., F. Nardari, and N. Shephard (1998), "Markov Chain Monte Carlo Methods for Generalized Stochastic Volatility Models", Discussion Paper: Nuffield College, Oxford
- Geweke, J., Amisano, G., (2008), "Comparing and evaluating bayesian predictive distributions of asset returns", *Working paper series*, European Central Bank
- Hautsch, N., Ou, Y., (2008), "Discrete-Time Stochastic Volatility Models and MCMC-Based Statistical Inference", *German Research Foundation*
- Jensen, M.J., Maheu, J.M., (2008), "Bayesian Semiparametric Stochastic Volatility Modeling", *Working paper series*, Federal Reserve Bank of Atlanta
- Kastner, G., Fruhwirth-Schnatter, S., LOPES, H.F. (2014), "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol", *The Contribution of Young Researchers to Bayesian Statistics Proceedings of BAYSM2013*, volume 63 of Springer Proceedings in Mathematics & Statistics, Springer-Verlag.
- R Core Team (2015). *R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing*, Vienna, Austria
- Raggi, D., Bordignon, S., (2009), "Sequential Monte Carlo Methods for Stochastic Volatility Models with Jumps", University of Bologna, University of Padova

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking