

BUCHAREST UNIVERSITY OF ECONOMIC STUDIES

DOCTORAL SCHOOL OF FINANCE AND BANKING

Dissertation paper

Measuring Systemic Risk in a CCA Global VAR

Scientific Coordinator: PhD Professor MOISĂ ALTĂR

MSc. Student: IOANA MARCU

Bucharest

June 2014

Aims of the Paper

Determine the extent to which the banking, sovereign and corporate sectors, along with economic growth and household credit growth, have been inter-dependent during the recent global financial crisis.

Analyze the spillover effects among Central and Eastern European countries by determining whether a shock in one sector of a country would have a significant effect on the other sectors and countries analyzed.

Determine which sector's distress has a higher impact on the contraction of economic growth. Compare the effects generated by shocks in the banking and sovereign sectors.

Literature review
 Methodology
 Data description
 Results
 Conclusions
 Selected References

1. Literature Review

2. Methodology

5 variables:

- Corporate Risk
- Banking Risk
- Sovereign Risk
- Economic growth
 Household credit growth

4 Central and Eastern European Countries:

- Romania
- Bulgaria
- Hungary
- Poland

For the period 2006-2013, using quarterly data.

For the Corporate, Banking and Sovereign Risk, the Contingent Claims Analysis Methodology is used:

Merton Model:

$$\begin{cases}
E = A N(d_1) - Be^{-rT} N(d_2) \\
E \sigma_E = A \sigma_A N(d_1)
\end{cases}$$

- **E** = Market capitalization;
- σ_E = the volatility of the traded equity (measured as historic volatility on a rolling window on 125 trading days);
- **B** = Distress Barrier;

B_{CORPORATE_SECTOR} = Short Term Debt + 0.5 Long Term Debt

(Moody's/KMV Methodology);

B_{BANKING_SECTOR} = 0.7 Total Liabilities;

B_{SOVEREIGN_SECTOR} = Short Term FCD + 0.5 Long Term FCD, where FCD = Foreign Currency Debt;

Measuring Sovereign Risk using CCA

2 conditions have to be met:

- all the elements encountered on the liabilities side could be traced to observable data;
- all the elements shall be denominated in a common currency.

Additional steps:

- construct the Consolidated Balance sheet of the Government and the National Bank:

Sovereign Sector Consolidated Balance Sheet					
Assets	Liabilities				
International Reserves	Domestic Currency Liabilities (DCL): Base Money (M0); 				
Domestic currency assets: Other assets – Financial Guarantees	 Domestic Currency Debt (DCD). Foreign Currency Debt (FCD) 				

- use the volatility of the main index of the stock exchange as proxy for equity volatility;

Risk indicators analyzed

The above risk indicators are calculated separately for each company and bank and for the sovereign sector as a whole.

3. Data description

Sector/ Country		Romania	Bulgaria	Hungary	Poland
Corporate Sector	(average percent of total market capitalization)	35%	23%	60%	22%
	number of companies	7	5	5	9
Banking Sector	(average percent of total banking system assets)	41%	27%	44%	49 %
	number of banks	4	4	3	8

Unlisted banks

Some assumptions were made in order to include in the analysis 3 banks that were not listed on a stock exchange:

$$E = \frac{\text{Group market capitalisation + Bank balance sheet equity}}{2}$$
$$\sigma_E = \frac{\text{Group}_{\sigma_E} + \text{weighted average of the local banks}_{\sigma_E}}{2}$$

Therefore, proxies have been used for the market capitalization and price volatility using information from the affiliated Banking Groups (Erste Group for Romania and Hungary, Unicredit Group for Bulgaria).

4. Results

4.1. CCA Results for the Corporate, Banking and Sovereign Sectors

4.1.1. Corporate sector

4.1.1. Corporate sector

4.1.2. Banking sector

4.1.2. Banking sector

4.1.3. Sovereign sector

4.2. Households and Economic Growth

4.2.1. Households

4.2.2. Economic growth

4.3. Results aggregated by country

4.4. Distances to distress

4.5. Series included in the GVAR

4.6. Common Weight matrices for the foreign variables vectors

	RO	BG	HU	РО
RO	0.00	0.26	0.27	0.18
BG	0.48	0.00	0.22	0.59
ни	0.28	0 17	0.00	0.23
PO	0.24	0.57	0.51	0.00

The weight matrix was computed by minimizing the sum squared residuals from a local model, subject to the constrains that its set of weights are non-negative and sum to unity (iterative numerical optimization using sequential quadratic programing).

$$min_{\tau_{i}, w_{ijk}} \sum_{t=1}^{T} \varepsilon_{it}^{2}$$
$$w_{ijk} \geq 0, j = 0, \dots, N, k = 1, \dots, K$$
$$\sum_{j=0}^{N} w_{ijk} = 1, \ k = 1, \dots, K,$$

4.7. Model's stability

4.8. Shock transmission analysis using GVAR's IIRFs

Scenario 1: A shock of 1 STD to all the countries banking sectors

Scenario 2: A shock of 1 STD to all the countries sovereign sectors

The impact of shocks in the banking and corporate sectors upon Economic Growth

The impact of shocks in the banking and corporate sectors upon Romanian Economic Growth

- The banks with a smaller value of assets faced financial distress earlier than the rest of the banks included in the analysis;
- The probabilities of default for the sovereign and corporate sectors ware significantly different from zero only during periods of distress;
- * A more suitable CCA risk indicator proved to be the distance to distress;
- The results obtained identified two periods of increased financial distress: the most severe episode of distress caused by the global financial crisis that affected the European countries in 2008-2009 and second episode of distress as a result of the euro area debt crisis that impacted the countries included in the analysis in 2011-2012.
- The estimated weights for the foreign variables vectors illustrated that the countries with the highest influence among the rest of the countries included in the analysis are Poland and Bulgaria.
- The result sustain the fact that the impact of a sovereign crisis is transmitted easier to economic growth than the impact of a banking crisis, the monetary policy mechanism having a delayed effect as compared to the fiscal policy mechanism. As it was expected, the cumulative impulse response functions are more pronounced when a shock affects both the banking and sovereign sectors.

Selected References

- Altăr, M., Samuel, J., Altăr-Samuel, A.N., (2012), "A Study Of Sovereign Risk, Using Contingent Claims Analysis", World Finance & Banking Symposium - "Asian Finance & Banking", Shanghai, China
- Bisias D., M. Flood, A. W. Lo, and S. Valavanis. (2012),. "A Survey of Systemic Risk Analytics", Working Paper 0001, Office of Financial Research;
- Gapen M. T., D. Gray, C. H. Lim, Y. Xiao (2008), "Measuring and Analyzing Sovereign Risk with Contingent Claims," IMF Staff Papers Volume 55.
- Gray D., M. Gross, J. Paredes, and M. Sydow (2013), "Modeling Banking, Sovereign, and Macro Risk in a CCA Global VAR", IMF Working Paper, WP/13/218;
- Gray, D. and A. A. Jobst (2011), "Systemic CCA A Model Approach to Systemic Risk", Conference "Beyond the Financial Crisis: Systemic Risk, Spillovers and Regulation";
- Gray, D., Merton, R. and Bodie, Z., (2008) "New Framework For Measuring And Managing Macrofinancial Risk And Financial Stability", Central Bank of Chile, Working Papers No. 541;
- Gray, Dale F. and Andreas A. Jobst. (2011) "Modelling Systemic Financial Sector Risk and Sovereign Risk". Economic Review 2:68,106.
- Gross M. (2013), "Estimating GVAR weight matrices", ECB, Working Paper Series No. 1523;
- Gross M. and C. Kok (2013), "Measuring contagion potential among sovereigns and banks
- using a mixed-cross-section GVAR", ECB, Working Paper Series No. 1570;
- Jobst A. A. and D. Gray (2013), "Systemic Contingent Claims Analysis Estimating Market-Implied Systemic Risk", IMF Working Paper, WP/13/54;
- Merton, R.C., (1973), "Theory of Rational Option Pricing," Bell Journal of Economics and Management Science, 4 (Spring), pp. 141-83 (Chapter 8 in Continuous-Time Finance).