Academy of Economic Studies Doctoral School of Finance and Banking - DOFIN

An economic analysis on bitcoin

MSc Student: Giorgiana Roxana Ene

Supervisor: Moisa Altar, PhD

Bucharest 2014

CONTENTS:

- Importance of the theme
- Motivations for choosing the topic
- Objectives of the paper
- Importance of the theme
- What is bitcoin
- How are bitcoins created
- Are bitcoins real money?
 - Bitcoin vs fiat money
 - Bitcoin vs gold
 - Money functions
 - Bitcoin money or commodity
- Bitcoin in the world
- Data construction and analysis
- About statistics
- Unit root testing
 - Augmented Dickey Fuller
 - Kwiatkowski-Phillips-Schmidt-Shin

- Unit root testing
 - Augmented Dickey Fuller
 - Kwiatkowski-Phillips-Schmidt-Shin
- Series distribution
- ARMA
 - AR estimation
 - MA estimation
 - ARMA estimation
 - Forecast
- Volatility models
 - ARCH
 - GARCH
 - EGARCH
 - TARCH
- Conclusions
- Proposals
- References

MOTIVATION FOR CHOOSING THE TOPIC

• Novelty character (faculty recommendation).

• The agresivity with which it appears in international transactions.

•Vastness of the topic.

• The possibility of performing research in an exciting and unexplored topic.

OBJECTIVES OF THE PAPER

• To understant what bitcoin is and how it's produced.

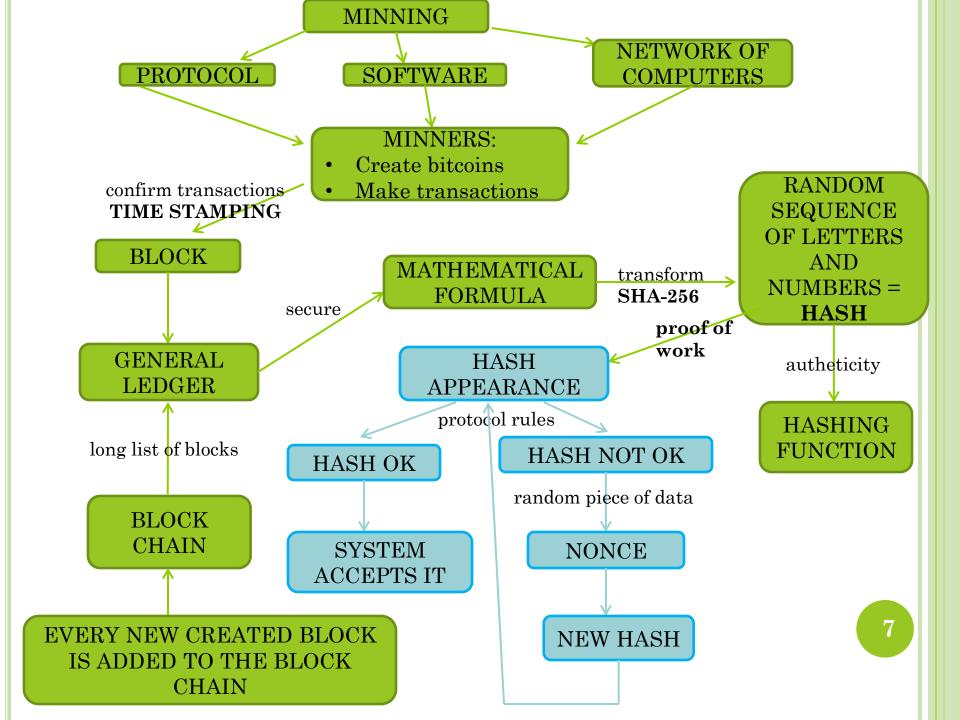
• To see if bitcoin is or not real money.

• To analyze the two exchange rate series: BTC/USD and BTC/EUR.

• Modelling an ARMA model and forecasting.

• Volatility analisys: ARCH, GARCH, EGARCH, TARCH.

IMPORTANCE OF THE THEME


- The long history of virtual currencies dating to 1982, when David Chaum first described a cryptographic system for untraceble payments.
- Understanding bitcoin, how it works, what it is and it's potential.
- Major international interest for this currency.

WHAT IS BITCOIN?

- The European Central Bank (ECB) defines virtual currency as "a type of unregulated, digital money, which is issued and usually controlled by it's developers, and used and accepted among the members of a specific virtual community"
- Bitcoin is the first cryptocurrency and it uses SHA-256 (a set of cryptographic hash functions designed by the U.S. National Security Agency) as it's *proof-of-work* scheme.
- The FBI says that bitcoin is a *"decentralized, peer-to-peer* (P2P) network-based *virtual currency* that provides a venue for individuals to generate, transfer, launder, and steal illicit funds with some anonymity."

How are bitcoins created

•Bitcoin are created throught a process called mining composed of three elements: protocol, software and network of computers.

BITCOIN VS FIAT MONEY

SIMILARITIES

DIFFERENCES

- o no intrinsec value
- depends on peoples trust in the currency
- o inconvertibility

- legal tender
- not backed by a commodity (gold or silver)

WHICH ONE IS BETTER - BITCOINS OR GOLD?

• According to the "Economics of Money, Banking and Financial Markets", Miskin, money have three functions:

• *Medium of Exchange* – money are used to pay for goods and services;

• *Unit of Account* – money are used to measure the value of different goods and services;

• Store of Value – "used to save purchasing power from the time income is received until the time it is spent."

BITCOIN – MONEY OR COMMODITY?

The oppinions about bitcoin are divide throughout the world.

- ECB classifies it as a virtual currency scheme with bidirectional flow.
- Germany defined them as private money and financial instrument.
- Denmark doesn't consider bitcoin a currency nor asset.
- IRS stated that for tax purposes "virtual currency is treated as a property.- General tax principles applicable to property transactions apply to transactions using virtual currency."
- Countries like Iceland and Vietman, made bitcoin illegal due to lack of laws applicable for virtual currency.

BITCOINS IN THE WORLD

BITBILLS

CASASCIUS BITCOIN POS

4m 5m 6mm

10-11=

CASASCIUS BITCOIN COINS

BITCOIN ATM ROMANIA

BITCOIN OPTIONS

Expires	Option	Profit(%)	Units	Price(€)	Return(€)	
15.04.14	Bitcoin/USD 701.4 🔶	70 %	1 •	€ 50	€ 85	BUY »
	Will bitcoin price (as define	ed in the general t	terms) touch o	r go above 701.	4 at 16:00 15.04.	14
15.04.14	Bitcoin/USD 651.3 🔶	50 %	1 •	€ 50	€ 75	BUY »
	Will bitcoin price (as define	d in the general t	terms) touch o	r go above 651.	3 at 16:00 15.04.	14
15.04.14	Bitcoin/USD 350.5 🖊	50 %	1 •	€ 50	€ 75	BUY »
	Will bitcoin price (as define	ed in the general	terms) touch o	r go below 350.	5 at 16:00 15.04.	14
15.04.14	Bitcoin/USD 301.10 🖊	70 %	1 •	€ 50	€ 85	BUY »
	Will bitcoin price (as define	d in the general t	erms) touch or	go below 301.1	0 at 16:00 15.04	.14
30.04.14	Bitcoin/USD 701.4 🔶	70 %	1 •	€ 50	€ 85	BUY »
	Will bitcoin price (as define	ed in the general t	terms) touch o	r go above 701.	4 at 16:00 30.04.	14
30.04.14	Bitcoin/USD 651.3 🔶	50 %	1 •	€ 50	€ 75	BUY »
	Will bitcoin price (as define	ed in the general t	terms) touch o	r go above 651.	3 at 16:00 30.04.	14
30.04.14	Bitcoin/USD 370.4 🖊	50 %	2 🔻	€ 100	€ 150	BUY »
	Will bitcoin price (as define	ed in the general	terms) touch o	r go below 370.	4 at 16:00 30.04.	14
30.04.14	Bitcoin/USD 301.10 🖊	70 %	2 🔻	€ 100	€ 170	BUY »
	Will bitcoin price (as define	d in the general t	erms) touch or	go below 301.1	0 at 16:00 30.04	.14
15.05.14	Bitcoin/USD 701.4 🔶	70 %	2 •	€ 100	€ 170	BUY »

Will bitcoin price (as defined in the general terms) touch or go above 701.4 at 16:00 15.05.14

COINKITE BITCOIN POS

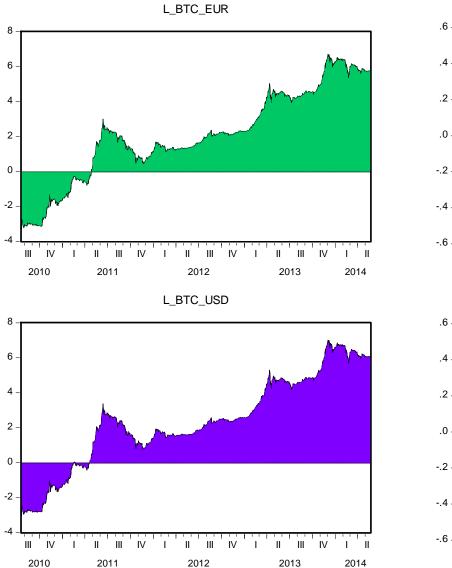
DATA CONSTRUCTION AND ANALYSIS

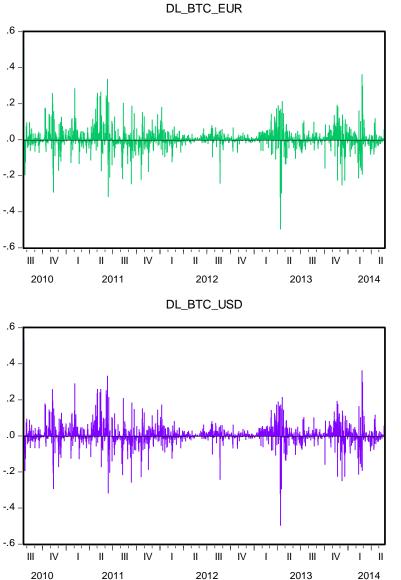
- The set of variables are the price of the following exchange rates: BTC/USD, BTC/EUR.
- The frame of the data spans from 19th July 2010 to 23th May 2014, which is almost 4 years of daily series data, counting 1405 observations, the computing of the data was done with Eviews 7, and the source for all data is <u>http://www.oanda.com/currency/historical-rates/</u>.
- The two series BTC/USD and BTC/EUR were transformed to a logarithmical form and they can be found under the named l_btc_usd respectively l_btc_eur, using the generate option, after which I applied the first difference operator on both logarithmical forms obtaining a daily price variation named dl_btc_usd respectively dl_btc_eur.
- The commands are:
- o l_btc_usd=log(btc_usd)
- l_btc_eur=log(btc_eur)
- dl_btc_usd=l_btc_usd-l_btc_usd(-1)
- dl_btc_eur=l_btc_eur-l_btc_eur(-1)

ABOUT STATISTICS

- *Skewness* is an indicator of asymetry and deviation from the normal distribution. This indicator can take three different values pozitive, zero or negative.
- The formula for skweness is:

$$S = \frac{1}{n} \times \frac{\sum_{i=1}^{n} (y_i - \bar{y})^3}{\sigma^2}$$
 and $\sigma^2 = \frac{1}{n} \times \sum_{i=1}^{n} (y_i - \bar{y})^2$


- *Kurtosis* is an indicator which describes the distribution of the series around it's mean, it's a measure for the probability peakness and it's based on a scaled version of the fourth moment. This indicator can also take three values greater, equal or lower than 3.
- The formula for kurtosis is:


$$K = \frac{1}{n} \times \frac{\sum_{i=1}^{n} (y_i - \bar{y})^4}{\sigma^{2^2}}$$

- Jarque-Bera (Charles Jarque and Anil Bera, 1979) is a test for goodness-of-fit, meaning that it shows whether the series have the skewness and kurtosis matching of a normal distribution.
- The formula for Jarque-Bera test is:

$$JB = \frac{n}{6} \times (S^2 + \frac{1}{4} (K - 3)^2)$$

REPRESENTATION OF L_BTC AND DL_BTC

UNIT ROOT TESTING – AUGMENTED DICKEY FULLER

- Augmented Dickey Fuller (David Dickey and Wayne Arthur Fuller, 1981) is a unit root test for large and complicated time series. The ADF tstatistic is a negative number and the more negative it is compared to the critical values, the rejection of the null hypothesis "the series has a unit root" is stronger meaning that the series is stationary.
- The test for unit root was done in level, include in test equation: intercept (constant), lag lenght was on automatic selection Schawrz Info Critirion with maximum lags:23 for l_btc_usd and l_btc_eur series.

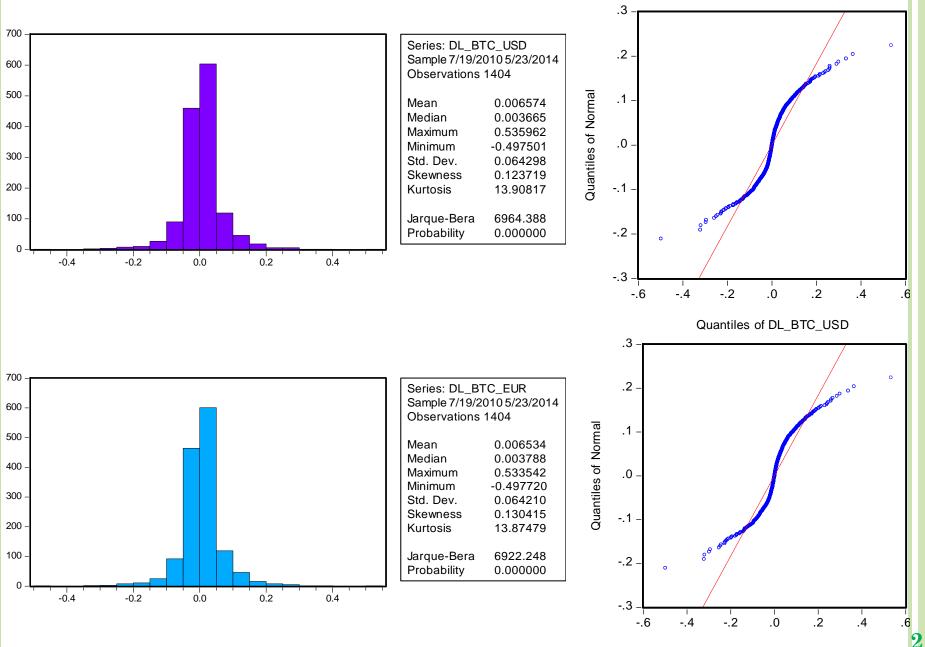
UNIT ROOT TESTING – KWIATKOWSKI-PHILLIPS-SCHMIDT-SHIN

- Kwiatkowski-Phillips-Schmidt-Shin (Denis Kwiatkowski, Peter Charles Bonest, Youngcheol Shin, Peter Schmidt; 1992) is used for testing the null hypothesis that a time series is stationarity. KPSS is often used to reinforce the results obtaind in the ADF test. The acceptance of the null hypothesis is based on the value of t – statistic being smaller than all the critical values
- The test for unit root was done in level, include in test equation: intercept (constant), spectral estimation method: default (Bartlett kernel), bandwidth : Newey – West Bandwidth for both series.

ADF TEST

ADF	t-Statistic	Probability	Critica	l values
			1%	-3.434802
l_btc_usd	-1.101536	0.7172	5%	-2.863393
			10%	-2.567806
			1%	-3.434802
l_btc_eur	-1.09288	0.7206	5%	-2.863393
			10%	-2.567806

KPSS TEST


KPSS (level)	t-Statistic	Critica	l values
		1%	0.739
l_btc_usd	4.00177	5%	0.463
		10%	0.347
		1%	0.739
l_btc_eur	4.032417	5%	0.463
		10%	0.347

UNIT ROOT TESTIN - ADF AND KPSS 1ST DIFFERENCE

Unit root test	Series	t-Statistic	Probability	Critica	al values
				1%	-3.434802
	dl_btc_usd	-30.70504	0.0000	5% 10%	-2.863393 -2.567806
ADF				1%	-3.434802
	dl_btc_eur	-30.68699	0.0000	5%	-2.863393
				10%	-2.567806
				1%	0.739000
	dl_btc_usd	0.161037	-	5%	0.463000
KPSS				10%	0.347000
				1%	0.739000
	dl_btc_eur	0.153664	-	5%	0.463000
				10%	0.347000

SERIES DISTRIBUTION

KERNEL DENSITY GRAPH

Quantiles of DL_BTC_EUR

ARMA - CORRELOGRAM

🔳 Tab	ole: UNTITLED Workfile: UN	TITLED::Untitled\					_ = x		🛅 Tabl	e: CORRELOGRAM_DL_B	TC_USD Workfile: UNTI	rled::l	Untitled\			_ 0	x
View P	roc Object Print Name I	Edit+/- CellFmt Grid+/	- Title	Comme	nts+/-				View Pr	oc Object Print Name	Edit+/- CellFmt Grid+/	- Title	Comme	nts+/-			
	Correlo	ogram of CORRELOGR	AM_L	_BTC_U	ISD				×		Correlogram of DL_	BTC_I	ÚSD				
	A	в	C	D	E	F	G			A	В	С	D	Е	F	G	
1	Date: 05/25/14 Time:	01:20					-		1	Date: 05/25/14 Tim	e: 01:19						
2	Sample: 7/19/2010 5/2	3/2014							2	Sample: 7/19/2010 5	/23/2014						
3	Included observations:	1405							3	Included observation	s: 1404						
4									4								8
5	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		5	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
6			ř.	North Contra	Norma randar		-		6	L.		i a	-		The second second		8
7			1			1400.5			7						68.297		
8		10	2			2794.9			8	<u>Ц</u>	L 1	2.80			68.355		
9		1	3			4183.4			9	4					74.769		
10			4			5566.0			10			N. Anna			75.621		
11			2			6942.5			11			2			85.473		
12		UL I	6			8312.5 9675.8			12			6			99.761		
13						11032.			13						101.65		
14		TT.	100			12382.			14	U 1		(GED)			103.88 103.94		
15		10	1.800			13725.			15			10			103.94		
<u>16</u> 17			22.20	80.000.00	2010205	15061.			16	10	1	11			118.91		
18		iii	23			16390.			17 18			12			124.26		
19			10.2			17713.			19		l ú	2.280			124.40		
20		di -	19922			19028.			20			14			130.75		
21		u	37.70			20337.			21	L. L		No.			130.95		
22		ji i	8722			21638.			22			16			132.04		
23	1	UL I	100.000			22932.			23	1	i ii	17			133.66		
24		ų.	18	0.950	-0.007	24220.	0.000		24	l II.	d di	18			134.05		
25		ų.	19	0.947	-0.005	25500.	0.000		25	II.		19			134.07		
26		ų.	20	0.944	-0.003	26773.	0.000		26	j)	l u	20			135.68		
27	1	11	21	0.941	-0.005	28039.	0.000		27	10	l ip	21	0.079	0.073	144.60	0.000	
28		Ψ.	22	0.938	-0.015	29297.	0.000		28	l III	1 11	22	0.046	0.004	147.61	0.000	
29		11	23	0.935	-0.006	30548.	0.000 +		29	l II	1	23	0.014	-0.002	147.88	0.000	-
30	✓ III		Е. ^с				►	-	30	ر ۲	138	1				•	

Proc Object Print	Name Edit+/- CellFmt G	A		nts+/-			View	Proc Object Print Name		1 1	ents+/-		
	Correlogram	of L_BTC_	EUR						Correlogram of DL	_BTC_EUR			
A	В	С	D	E	F	G		A	В	C D	Е	F	G
Date: 05/25/14	Time: 01:19						1	Date: 05/25/14 Tim	ie: 01:19				
Sample: 7/19/2	010 5/23/2014						2	Sample: 7/19/2010	5/23/2014				
Included obser	vations: 1405						3	Included observation	s: 1404				
							4						
Autocorrela	tion Partial Correla	tion	AC	PAC	Q-Stat	Prob	5	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Pro
		84				_	6		î î				
1		1			1400.5		7			1 0.221			
l I)	2			2795.1		8	L II	El.	2 -0.003			
1		3	0.992	0.002	4183.8	0.000	9	Q!	El El	3 -0.066	-0.056	74.729	0.0
1		4	0.990	-0.000	5566.7	0.000	10	()	l ID	4 0.022	0.053	75.427	0.0
1		5	0.987	-0.009	6943.5	0.000	11	ip	םי ו	5 0.082	0.066	84.889	0.0
	 _	6	0.985	-0.034	8313.9	0.000	12	i p	ן ו	6 0.103	0.071	99.983	0.0
1	1	7	0.982	-0.016	9677.7	0.000	13	Qi	E ¹	7 -0.035	-0.072	101.74	0.0
	1	8	0.979	-0.013	11035.	0.000	14	Qi	l III	8 -0.038	-0.004	103.82	0.0
		9	0.976	0.001	12385.	0.000	15	L I	10	9 0.008	0.026	103.91	0.0
1		10	0.974	-0.002	13729.	0.000	16	l III	1	10 0.053	0.030	107.84	0.0
1		11	0.971	0.001	15065.	0.000	17	ļ l	ו	11 0.090	0.065	119.42	0.0
1	₩	12	0.968	-0.014	16395.	0.000	18	l II	I)	12 0.062	0.033	124.90	0.0
1		13	0.965	-0.000	17719.	0.000	19	- III	ų.	13 -0.009	-0.012	125.01	0.0
		14	0.962	0.001	19035.	0.000	20	l II	םי	14 0.064	0.082	130.75	0.0
1		15	0.960	-0.014	20344.	0.000	21	U	L D	15 -0.015	-0.060	131.08	0.0
		16	0.957	-0.001	21647.	0.000	22	()	1 1)	16 0.028	0.030	132.16	0.0
1		17	0.954	-0.006	22942.	0.000	23	II	I)	17 0.032	0.017	133.65	0.0
l I		18	0.951	-0.006	24230.	0.000	24	(l)	(I	18 -0.017	-0.037	134.08	0.0
1		19	0.948	-0.005	25511.	0.000	25	11	I)	19 0.001	0.023	134.08	0.0
1		20	0.945	-0.003	26786.	0.000	26	փ	l il	20 0.032	0.017	135.50	0.0
1		21	0.942	-0.005	28053.	0.000	27	ı]	1	21 0.079	0.074	144.45	0.0
1		22	0.939	-0.015	29312.	0.000	28			22 0.049	0.006	147.94	0.0

ARMA – AUTOREGRESSIVE MOVING AVERAGE

- Autoregressive Moving Average model, ARMA for short, was first described by Peter Whittle in 1951. ARMA models are used to describe stationary time series and it represents time series that are generated by passing a white noise test (recursive filter) AR(p), and also a non-recursive linear filter MA(q), consecutively.
- 0
- The AR(p) model is describes by:

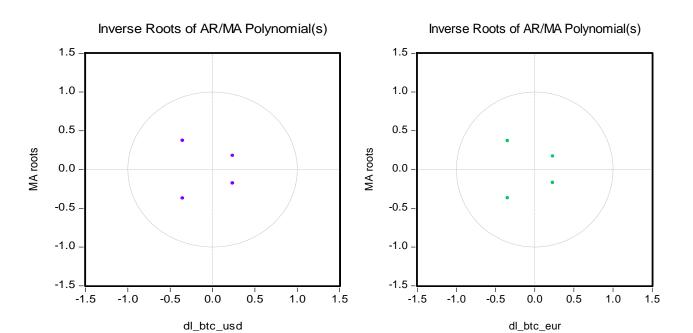
$$X_t = c + \sum_{i=1}^p \rho_i X_{t-i} + \varepsilon_t$$

- Where:
- ε_t white noise process, with a zero mean and a constant variance if the series is normal distributed;
- c constant;
- ρ_i coefficients.
- MA(q) model represent the moving average of older q with white noise errors and is described by: $X_t = \varepsilon_t + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i}$
- Where θ_i are the MA coefficients.
- Combining the two previous model we get ARMA(p,q) model and is described as follows:

$$X_t = \varepsilon_t + \sum_{i=1}^p \rho_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$$

$\label{eq:ARMA} ARMA \ ESTIMATION - MODEL \ SELECTION$

- AIC (1973-1974) is a measure of the relative quality, of a statistical model for a given set of data, proides a mean for model selection; deals with a tradeoff between the goodness of fit of the model. Can't tell anything about a tests null hypothesis.
- SC (Gideon E Schwarz 1978), a criterion for model selection among a finite set of models. It is based on the likelihood function and it's closely related ro AIC.
- The basic information criteria are given by the following formulas:


$$AIC = -2\frac{l}{T} + 2\frac{k}{T}$$

$$SC = -2\frac{l}{T} + \frac{k\log T}{T}$$

• Where l – the value of the likelihood function with k parameters estimated using T observation and the criterions are based on (-2) times the average log likelihood function, adjusted by a penalty function.

MOVING AVERAGE ESTIMATION

- To estimate the MA(4) I generated a new equation for each exchange rate that looks like:
- dl_btc_usd c dl_btc_usd(-1) ma(1) ma(2) ma(3) ma(4)
- dl_btc_eur c dl_btc_eur(-1) ma(1) ma(2) ma(3) ma(4)
- and it's estimated with LS- Least Sequence Squared (NLD and ARMA) method
- Let's take a look at the at the characteristic polynomial roots, graph and tabel representations.

Inverse Roots of AR/MA Polynomial(s) Specification: DL_BTC_USD C DL_BTC_USD(-1)

MA(1) MA(2) MA(3) MA(4) Date: 05/25/14 Time: 02:09 Sample: 7/19/2010 5/23/2014 Included observations: 1403

MA Root(s)	Modulus	Cycle
$-0.351885 \pm$		
0.372220i	0.512221	2.698825
$0.237943 \pm$		
0.178296i	0.297332	9.770665

No root lies outside the unit circle. ARMA model is invertible. Inverse Roots of AR/MA Polynomial(s) Specification: DL_BTC_EUR C DL_BTC_EUR(-1)

MA(1) MA(2) MA(3) MA(4) Date: 05/25/14 Time: 02:22 Sample: 7/19/2010 5/23/2014 Included observations: 1403

MA Root(s)	Modulus	Cycle
$-0.344400 \pm$		
0.368567i	0.504433	2.705575
$0.231383 \pm$		
0.170535i	0.287437	9.892523

No root lies outside the unit circle. ARMA model is invertible.

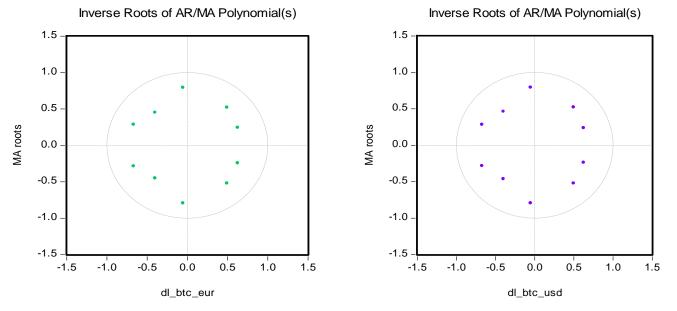
Pro	oc Object Print Name	Edit+/- CellFmt Grid+/	- Title	Comme	nts+/-				ew Pr	roc Object Print Name	Edit+/- CellFmt Grid+/	- Title	e Comme	nts+/-		
-		Correlogram of Re	sidual	ls							Correlogram of Re	sidua	ils	V. 10	, <u>, , , , , , , , , , , , , , , , , , </u>	
	A	В	С	D	E	F	G			A	8	C	D	E	F	G
	Date: 05/25/14 Tim	e: 02:10							1	Date: 05/25/14 Tim	e: 02:22					
	Sample: 7/21/2010 5	/23/2014							2	Sample: 7/21/2010 5	/23/2014					
	Included observation	s: 1403							3	Included observation	s: 1403					
	Q-statistic probabiliti	es adjusted for 4 ARN	IA te	rm(s)					4	Q-statistic probabiliti	es adjusted for 4 ARM	AA to	erm(s)			
â.									5							_
	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		6	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
2		V. 510 A	1 00	A-02-02-04	DAVA PAST				7		4 4	1		7.500000		_
2	1	1	1	0.001	0.001	0.0004			8	1	11	1	0.000		0.0003	
16	1	1	2	0.001	0.001	0.0024			9		11	2			0.0023	
)	ų.	1 1	3	-0.009	-0.009	0.1143			10	4 P		3	-0.009	-0.009	0.1105	
E	ų.	1	4	0.010	0.010	0.2533			11	- P	1	4	0.010	0.010	0.2456	
2	- P	1	5	0.057	0.057	4.8406	0.028		12	1	1	5	0.055	0.055	4.5135	0.03
3	'P	「「」	6	0.118	0.119	24.619	0.000		13	P	中	6		000000	25.419	
	q.	Qi .	1.000		2025552	29.458	10000		14	Q	P	7	1107.7		30.165	107.577
5	ų.	l f	8	-0.025	-0.026	30.368	0.000		15	ų.	1	8			31.024	10000
3		1	9	0.008	0.010.000	30.465	0.000		16	4		9	0.010	0.012	31.168	0.00
	ų	1 1	10	0.029	1.1	31.656	0.000		17	4	1 12	10	0.028	0.023	32.303	0.00
3	in the second se	1 12	11	0.071	- 34 3 7 3 4	38.704	12.65		18	- P	1 12	11	10000	1001 0101	1000000	1000
)	y.	1 1	12			42.915	0.000		19	1	1	12		0.047		
)	ų.	<u> </u>	1.27		8 20 (77)	44.995	0.000	8	20	<u> </u>	1	13	1022220		45.854	100000
1	Ϋ́.	1	14				10283		21	1	1	14		20222	57.712	
2	4			0.012		59.926	0.000	-	22	- Y	1	15		-0.050		100000
3	1		16	0.023	- 30	60.664	10000	1	23			16		0.009	60.813	10.0 8.0 2
4	1	1	17	0.047	1.2412.3	63.868	0.000		24	1		17		1210220	63.767	0.00
5		9	1000			65.269	0.000		25	1		18		-0.035		10000
3	1	11	1.53			65.324	0.000		26	1	11	19			65.144	
7	1		20	0.025	1913.5.8	66.180	21222	-	27			20		0.004	1.	
В	12		21	0.068	0.083		0.000	8 -	28	1 12	1	21	1178.98.2			0.000.0
9		1	22	0.023	0.012	73.589	0.000	-	29		11	22	0.026	0.014	73.458	0.00

AUTOREGRESSIVE ESTIMATION

• To estimate the AR(1) I generated a new equation for each exchange rate, that looks like:

- dl_btc_usd c dl_btc_usd(-1)
- dl_btc_eur c dl_btc_eur(-1)
- and it's estimated whit LS- Least Sequence Squared (NLD and ARMA) method.
- AR coefficient is smaller than 1 which means that the equation is stable.

Dependent Variable: DL_BTC_USD Method: Least Squares Date: 05/25/14 Time: 07:35 Sample (adjusted): 7/21/2010 5/23/2014 Included observations: 1403 after adjustments

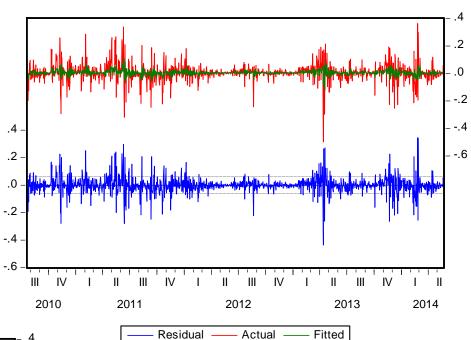

Dependent Variable: DL_BTC_EUR Method: Least Squares Date: 05/25/14 Time: 07:41 Sample (adjusted): 7/21/2010 5/23/2014 Included observations: 1403 after adjustments

Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
0.004550	0.001.0.11	2 00 0 0 0	0.0000					
0.004753	0.001641	2.896699	0.0038	С	0.004722	0.001639	2.881223	0.0040
0.220356	0.025391	8.678376	0.0000	DL_BTC_EUR(-1)	0.220752	0.025393	8.693270	0.0000
0.051015	Mean depe	ndent var	0.006197	R-squared	0.051181	Mean depe	endent var	0.006159
0.050338	S.D. depen	dent var	0.062747	Adjusted R-squared	0.050504	S.D. deper	ndent var	0.062671
0.061147	Akaike info	o criterion	-2.749631	S.E. of regression	0.061068	Akaike inf	o criterion	-2.752228
5.238361	Schwarz cr	riterion	-2.742152	Sum squared resid	5.224774	Schwarz c	riterion	-2.744750
1930.866	Hannan-Q	uinn criter.	-2.746836	Log likelihood	1932.6880		-	-2.749433
75.31422	Durbin-Wa	atson stat	1.945339	F-statistic	75.57294	Durbin-W	atson stat	1.947826
0.000000				Prob(F-statistic)	0.000000			
	0.004753 0.220356 0.051015 0.050338 0.061147 5.238361 1930.866 75.31422	0.004753 0.001641 0.220356 0.025391 0.051015 Mean dependent 0.050338 S.D. dependent 0.061147 Akaike info 5.238361 Schwarz en dependent 1930.866 Hannan-Q 75.31422 Durbin-Wat	0.004753 0.001641 2.896699 0.220356 0.025391 8.678376 0.051015 Mean dependent var 0.050338 S.D. dependent var 0.061147 Akaike info criterion 5.238361 Schwarz criterion 1930.866 Hannan-Quinn criter. 75.31422 Durbin-Watson stat	0.004753 0.001641 2.896699 0.0038 0.220356 0.025391 8.678376 0.0000 0.051015 Mean dependent var 0.006197 0.050338 S.D. dependent var 0.062747 0.061147 Akaike info criterion 2.749631 5.238361 Schwarz criterion 2.742152 1930.866 Hannan-Quinn criter. 2.746836 75.31422 Durbin-Watson stat 1.945339	NumberNumberNumberNumberNumberNumberNumber 0.004753 0.001641 2.896699 0.0038 C $DL_BTC_EUR(-1)$ 0.220356 0.025391 8.678376 0.0000 $DL_BTC_EUR(-1)$ 0.051015 Mean dependent var 0.006197 R-squared 0.050338 S.D. dependent var 0.062747 Adjusted R-squared 0.061147 Akaike info criterion 2.749631 S.E. of regression 5.238361 Schwarz criterion 2.742152 Sum squared resid 1930.866 Hannan-Quinn criter. 2.746836 Log likelihood 75.31422 Durbin-Watson stat 1.945339 F-statistic	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VariableCoefficientStd. Errort-Statistic 0.004753 0.001641 2.896699 0.0038 C 0.004722 0.001639 2.881223 0.220356 0.025391 8.678376 0.0000 $DL_BTC_EUR(-1)$ 0.220752 0.025393 8.693270 0.051015 Mean dependent var 0.006197 R-squared 0.051181 Mean dependent var 0.050338 S.D. dependent var 0.062747 Adjusted R-squared 0.050504 S.D. dependent var 0.061147 Akaike info criterion -2.749631 S.E. of regression 0.061068 Akaike info criterion 5.238361 Schwarz criterion -2.742152 Sum squared resid 5.224774 Schwarz criterion 1930.866 Hannan-Quinn criter. -2.746836 Log likelihood $1932.688criter.$ Hannan-Quinn 75.31422 Durbin-Watson stat 1.945339 F-statistic 75.57294 Durbin-Watson stat

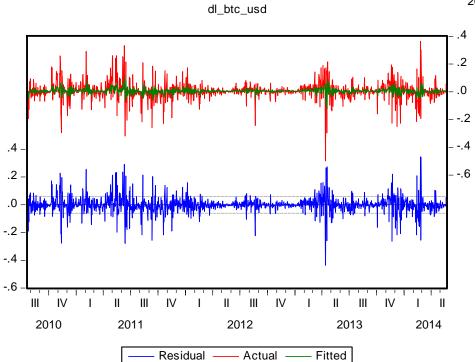
ARMA ESTIMATION

- To estimate ARMA, I generated a new eguation for each exchange rate that looks like:
- dl_btc_usd c dl_btc_usd(-1) ma(5) ma(6) ma(7) ma(8) ma(9) ma(10)
- dl_btc_eur c dl_btc_eur(-1) ma(5) ma(6) ma(7) ma(8) ma(9) ma(10)
- and the MA value starting at 5 is justified by the serial correlation that exists starting with the fifth lag. The equation is estimated whit LS- Least Sequence Squared (NLD and ARMA) method.
- The inverted roots are in the unit circle for both series and the modulus of the characteristic polynomial roots is smaller than 1, meaning that the ecuation is stable.

 $\mathbf{31}$

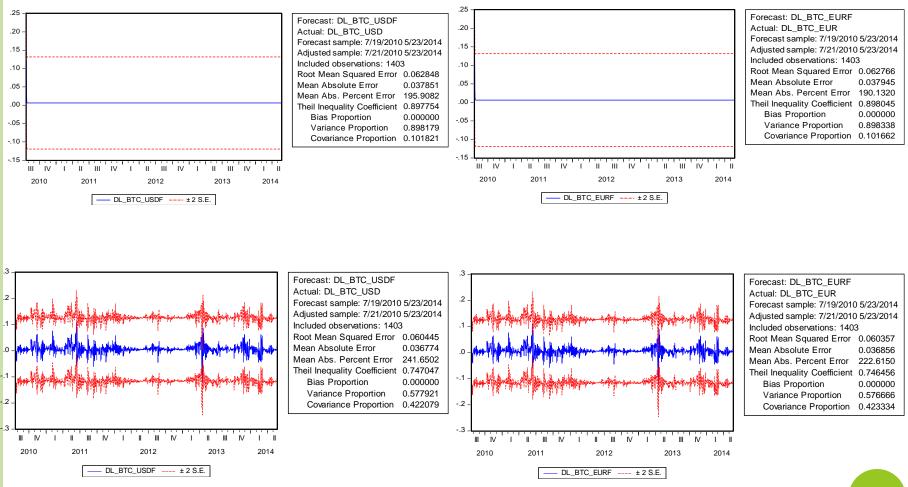


Inverse Roots of AR/MA F	olynomial(s)		Inverse Roots of AR/MA Po	olynomial(s)	
Specification: DL_BTC_U	SD C DL_BTC_	USD(-1)	Specification: DL_BTC_EU	JR C DL_BTC_E	UR(-1)
MA(5) MA(6) MA(7)	MA(8) MA(9) M	A(10)	MA(5) MA(6) MA(7) N	/IA(8) MA(9) MA	(10)
Date: 05/25/14 Time: 08:	30		Date: 05/25/14 Time: 08:4	15	
Sample: 7/19/2010 5/23/20			Sample: 7/19/2010 5/23/201		
Included observations: 14	03		Included observations: 140)3	
MA Root(s)	Modulus	Cycle	MA Root(s)	Modulus	Cycle
	0 504401	0.041 500			0.000044
$-0.051429 \pm 0.792755i$	0.794421	3.841566	$-0.052625 \pm 0.793801i$	0.795544	3.838244
	0 700077	0 000 41 0		0 705 4 40	0.005001
$-0.672177 \pm 0.282881i$	0.729277	2.290418	$-0.666866 \pm 0.285577i$	0.725440	2.295661
$0.497047 \pm 0.522779i$	0.721356	7.751041	$0.493270 \pm 0.520966i$	0.717440	7.731258
0.497047 ± 0.5227791	0.721330	7.731041	0.495270 ± 0.5209001	0.717440	1.151200
$0.625330 \pm 0.237736i$	0.668997	17.29469	$0.627357 \pm 0.243019i$	0.672782	17.00131
0.020500 ± 0.2077501	0.008997	17.29409	0.027357 ± 0.2430191	0.072782	17.00131
$-0.398771 \pm 0.461824i$	0.610164	2.752091	$-0.401136 \pm 0.450714i$	0.603368	2.734126
-0.550771 ± 0.4010241	0.010104	2.752031	-0.401100 ± 0.4007141	0.003308	2.754120
No root lies outside the u	nit circle		No root lies outside the ur	nit circle	
ARMA model is invertible			ARMA model is invertible		
				-	_


CORRELOGRAM ARMA(1, 10)

Proc Obj	ject Print Name	Edit+/- CellFmt Grid+/	- Title Co	mment	\$+/-				roc Object Print Name	Edit+/- CellFmt Grid+/	- Title	e Comme	nts+/-		
		Correlogram of R	siduals						and a second with a second	Correlogram of F	Reside	uals			
	A	в	C D		E	F	G		A	В	С	D	E	F	G
Date:	05/25/14 Tim	e: 08:30	Month of the				10000	*	Date: 05/25/14 Tim	e: 08:45					
Samp	le: 7/21/2010 5	/23/2014							Sample: 7/21/2010 5	/23/2014					
Includ	led observation	s: 1403							Included observation	s: 1403					
Q-sta	tistic probabiliti	es adjusted for 6 ARN	[A term(s)					Q-statistic probabiliti	es adjusted for 6 ARM	IA te	rm(s)			
					2812	1818 1	100								
Au	atocorrelation	Partial Correlation	A		PAC	Q-Stat	Prob		Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	1)	ji ji	1 0.0)22 (0.022	0.6873			j	i)	1	0.021	0.021	0.6252	
	di .	l di	2 -0.0)28 -(0.029	1.7946			L O	((t	2	-0.025	-0.026	1.5097	
	di.	di di	3 -0.0)64 -(0.063	7.5976			L O	di di	3	-0.064	-0.063	7.2077	
	1)	9	4 0.0)42 (0.044	10.092			L 1)	1 1	4	0.040	0.042	9.4155	
	ų.	1 10	5 -0.0	02 -0	0.007	10.096			L 4		1 50			9.4238	
	n	l du	6 -0.0	07 -0	800.0	10.161			L W	ψ	6	-0.007	-0.009	9.4891	
	4	1	7 -0.0	000 (0.006	10.161	0.001		1 10	1	7	-0.000	0.005	9.4891	0.002
	111	l (t	8 -0.0)14 -(0.017	10.436	0.005		L #	- 4C	8	2.2.2.2	202.201	9.7737	0.008
	ų	1	9 -0.0	000 (0.000	10.436	0.015		1 11	11	9			9.7743	10000
	III.	l li	10 0.0	005 (0.005	10.469	0.033		1 1	1 1	10			9.8034	
	ιp	1 1	11 0.0)58 (0.056	15.275	0.009		L 10		11			15.078	
	1	1 1	1.2.2			20.225			l y	1 1	12			20.016	
_	ų.	1		1.1		21.655			1 1	1 1		21 82.7	100 0000	21.305	1201202
	'P	P P	1.1.1			32.284				1	14			31.299	1000.007
	q	Q1				35.126	1000		- Y	8	1.5			34.445	100000
	II.		CO.5. (51)	202	010.77	35.490	0.000		H 11	1 1	16	0.53757.7	100.000	34.819	20.00
	18	9	- HOL 1992			36.522			H 1		17	12000		35.718	10000
		9	1.			37.752					1.2.3		212.020	36.914	10000
	1		1.452 A 1.152			37.829			H 11		19	0.005		36.948	0005.05
	1	1	ST. 1997	122611	550 - 50 - 50 - 50 - 50 - 50 - 50 - 50	38.159	100.000				20	0.000		37.206	100025
	1 P		20.01 10:22		2.2.2.2	45.922					21	1000	0.000		0.000
	111		22 0.0	012 (0.014	46.116	0.000	-		11	22	0.014	0.016		0.000

RESIDUAL, ACTUAL, FILTERED DATA ARMA(1, 10)


dl_btc_eur

ARMA MODELS - COMPARISON

	MA(4)		AR	(1)	ARMA(1,10)	
	dl_btc_usd	dl_btc_eur	dl_btc_usd	dl_btc_eur	dl_btc_usd	dl_btc_eur
Adjusted R-squared	0.058673	0.058137	0.050338	0.0504	0.066713	0.06716
Akaike info criterion	-2.755604	-2.757457	-2.749631	-2.752228	-2.762763	-2.76581
Schwarz criterion	-2.733168	-2.735021	-2.742152	-2.74475	-2.732848	-2.735766

FORECAST ARMA(1,10)

VOLATILITY ANALYSIS ARCH

- ARCH (autoregressive conditional heterskedasticity, intoduced by Robert Fry Engle, 1982) models are used for modelling financial time series and assumes that the variance of the current error term or innovation (the difference between the observed value of a variable at time *i* and the optimal forecast of that value based on information available prior to time *i*) to be function of the actual size of the previous time periods error terms, often the variance is related to the squares of previous innovations.
- The error terms ε_t is composed of two stochastic terms z_t (white noise) and standard deviation σ_t .

$$\varepsilon_t = z_t \, \sigma_t$$

• The representation of ARCH(p) variance σ_t^2 is as followed:

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2 = \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2$$

- Where: $\alpha_0 > 0$ and $\alpha_i > 0$, i > 0.
- The ARCH testing is done with the estimation method: ARCH and the orders are as follows: ARCH 1, GARCH 0 and Treshold 0, error distribution normal.

GARCH

- GARCH (generalized autoregressive conditional heteroskedasticity) is a generalized ARCH model introduced by Tim Petter Bollerslev in 1986.
- The representation of GARCH (p,q) variance is as follows:

$$\sigma_t^2 = \omega + \sum_{j=1}^q \beta_i \sigma_{t-i}^2 \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2$$

- Where ω a constant.
- The GARCH testing is done with the estimation method: ARCH and the orders are as follows: ARCH 1, GARCH 1 and Treshold 0, error distribution normal.

EGARCH

- EGARCH model (exponential generalized autoregressive conditional heteroskedasticity) was introduced by Nelson in 1991 and is another form of GARCH.
- The representation of EGARCH variance is as follows:

•
$$\log (\sigma_t^2) = \omega + \sum_{j=1}^q \beta_i \log(\sigma_{t-j}^2) + \sum_{i=1}^p \alpha_i \left| \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right| + \sum_{k=1}^r \gamma_k \frac{\varepsilon_{t-k}}{\sigma_{t-k}}$$

 The GARCH testing for is done with the estimation method: EGARCH and the orders are as follows: ARCH – 1, GARCH – 1 and Asymmetric order – 0, error distribution – normal.

TARCH

- TARCH (Treshold autoregressive conditional heteroskedasticity) was introduced independently by Zakoian (1994) and Glosten.
- The generalized representantion of TARCH variance is as followed:

$$\circ \sigma_t^2 = \omega + \sum_{j=1}^q \beta_i \sigma_{t-i}^2 \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{k=1}^r \delta_k \varepsilon_{t-k}^2 \overline{I}_{t-k}$$

- Where: $\bar{I}_{t-k} = 1$ if $\varepsilon_t < 0$ and zero otherwise.
- The GARCH testing for is done with the estimation method: EGARCH and the orders are as follows: ARCH 1, GARCH 1 and trashold 1, error distribution normal.

VOLATILITY MODELS - COMPARISON

	ARCH 1		GARCH 1_1		EGARCH 1_1		TARCH 1_1_1	
	dl_btc_usd	dl_btc_eur	dl_btc_usd	dl_btc_eur	dl_btc_usd	dl_btc_eur	dl_btc_usd	dl_btc_eur
Log likelihood	2120.676	2121.752	2309.084	2306.274	2316.511	2313.593	2309.173	2306.443
Akaike info criterion	-3.018057	-3.01959	-3.28505	-3.281017	-3.2956	-3.290019	-3.283722	-3.279834
Schwarz criterion	-3.010583	-3.012115	-3.273808	-3.269805	-3.284389	-3.27507	-3.268773	-3.264885

ARCH LM-TEST

Heteroskedasticity Test: ARCH		dl_btc_usd		
F-statistic	0.201248	Prob. F(1,1401)		0.6538
Obs*R-squared	0.201506	Prob. Chi-Square(1)		0.6535

Heteroskedasticity Test: ARCH		dl_btc_eur		
F-statistic	0.285457	Prob. F(1,1401)	0.5932	
Obs*R-squared 0.285806		Prob. Chi-Square(1)	0.5929	

CONCLUSION

- Comparison of any classic or gold coins can not be achieved in practice without involving state organizations, and this contradicts the fundamental principle of virtual currency, therefore not be under state control and be managed by specific rules (banking and financial system).
- The increase in the use of bitcoins and other similar virtual currencies might lead to a decrease in the use of real money, reducing the cash needed to conduct transactions.
- From the conducted research, besides that bitcoin can be currency financial assets, property, also appears the probability that bitcoin can be used as a real weapon to destroy and control the financial system.
- ARMA (1,10) is the best model to estimate the forecast, based on the values of adjuster R-squared, Akaike info criterion and Schwarz criterion.
- Altough I chose the best ARMA model, the forecast of bitcoin is very complicated and the result are not conclusive, because the series are very volatile and it's very difficult to estimate future outcome. The future of bitcoin relying only on it's developers and users.
- The volatility analysis has determined that the best model is EGARCH (1,1), and both series have an asymetrical distribution to the left, leptokurtic and normal distribution.
- Attempts of econometric application on the current series have proven that can be applied to a point, beyond which analysis parameters can not be common to Bitcoin and other currencies.
- In my opinion Bitcoin power should not be neglected, but rather should support users of this currency with respect to the risks and benefits of transactions made.

PROPOSAL

- The creation on an educational system by the developers, for users.
- Collect all the official statements of state organisation, financial institutions, states etc and centralize all the oppinions about bitcoin and see the frequency with which they appear.
- I commit to post this paper, to be public to all persons interested in this topic, to discuss and clarify what is Bitcoin ultimately.
- To try and understand the general trend of bitcoin and see what and how influences it.

REFERENCES

- Blind signatures for untraceable payments, Advances in Cryptology Crypto 1982, David Chaum, Springer-Verlag (1983)
- Virtual Currency Schemes, Europen Central Bank, October 2012
- o Bitcoin Virtual Currency: Unique Features Present Distinct Challenges for Deterring Illicit Activity, 24 April 2012, FBI.
- The Classification of Money, John Maynard Keynes, Elizabeth Johnson and Donald Moggridge, Royal Economic Society, 1978;
- The Classification of Money, John Maynard Keynes, Elizabeth Johnson and Donald Moggridge, Royal Economic Society, 1978;
- Money and Investment, Montgomert Rollind, George Routledge & Sons, 1917;
- o The Economics of Money, banking, and Financial Market, Seventh Edition, Frederic S. Miskin
- o Cause and Effect. Bitcoin: a first assessment, Bank of America Merrill Lynch, 5 December 2013;
- The Overlapping Generation Model of Fiat Money, Neil Wallace;
- http://www.onlygold.com/tutorialpages/historyfs.htm
- <u>http://www.irs.gov/pub/irs-drop/n-14-</u> 21.pdf?utm_source=3.31.2014+Tax+Alert&utm_campaign=3.31.14+Tax+Alert&utm_medium=email
- <u>http://bitlegal.net/</u>
- o http://www.bloomberg.com/news/2014-01-15/china-s-treasury-holdings-rose-to-record-in-november-data-show.html
- Econometrie aplicata utilizand EViews 5.1, Adrian Codirlasu, October 2007;
- Analysis of Financial Time Series with EViews, Enrico Foscolo;
- Financial econometric whit Eviews, Roman Kozhan;
- *Unit root testing to help model building*, Lavan Mahadeva and Paul robinson, Handbooks in central Bankin, No. 22, 2004;
- Forecasting of the, Austrian, Inflation Rate, Case Study for the Course of Econometric Forecasting, Winter Semester 2007, Nadir Shahzad Virkun and Tomas Sedliacik;
- Forecasting the US Dollar / Euro Exchange rate Using ARMA Models, Roberts Kunst, 2006;
- *Modeling and Forecasting the US Dollar / Euro Exchange Rate*, Latife Ghalayini, International Journal of Economics and Finance; Vol. 6, No. 1, 2014;
- Autoregressive Conditional Heteroskedasticity (ARCH), Heino Bohn Nielsen, Econometrics 2, Fall 2005;
- Information Criteria and Model Selection, Herman J. Bierens, Pennsylvania State University, March 12, 2006;

THANK YOU VERY MUCH FOR YOUR ATTENTION !

Q & A