

The Transmission Mechanism of Financial Shocks in the Global Economy

STUDENT: LOLEV CRISTIAN DAN PAUL SUPERVISOR: PROF. MOISĂ ALTĂR

Paper goals

Reasoning

Why Open Economy Model?

Part of European UnionStrong financial linksAdopt Euro currency in the near future

Why FAVAR model?

Literature Review

- 2005 Bernanke, Boivin and Eliasz Closed Economy FAVAR model Impulse response in the variables to a shock in FED rate
- 2007/9Surico P. and H. MumtazOpen Economy FAVAR modelQuantify dynamic effects felt by UK after a shock of short-term interest rates
- 2008 Boiving J. and M. Giannoni Open Economy FAVAR model
 Quantify changes in relation between international forces and US variables 1984-2005
 Analyze changes in the monetary policy transmission mechanism
- 2011Maier P. and G. VasishthaOpen Economy FAVAR modelAnalyze global developments affecting Canada's economy
- 2012 Benkovskis K., Bessonovs A. and J. Worz Feldkircher
 Open Economy FAVAR model Euro Area, Czech Republic, Poland and Hungary
 Estimate the cross-border effects of ECB contractionary monetary policy

FAVAR model – Factor model

X (n x 1) – observable variables Λ (n x r) – factor loadings F (r x 1) – vector of factors e (n x 1) – model residuals

Factor extraction

- 1. Extracting the first K principal components of X obtain Λ_0 and F_0
- 2. Intermediate step
- 3. Gibbs loop

• Obtain F^* , Λ^* , F and Λ

FAVAR model – Factor model

Database description

Frequency: monthly Span: June 2001 – March 2015 Adjusments: Seasonnally and by working days Source: Eurostat and NBR' website

Data preparation:

- First difference
- First logarithm difference

Unobservable factors

Number of factors:

- Euro Area r = 3
- Romania r = 3

Number of variables:

- Euro Area 20
- Romania 24

- Bai and Ng criterion
- Related articles

FAVAR model – Extracted factors

Euro Zone unobservable factors

Factor 2 România

Factor 3 România 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Romania unobservable factors

2002 2003 2004

2005 2006 2007 2008

2009 2010 2011 2012 2013 2014 2015

FAVAR model – VAR model

$$\begin{bmatrix} F_{t}^{*} \\ R_{t} \\ F_{t} \end{bmatrix} = A_{1} * \begin{bmatrix} F_{t-1}^{*} \\ R_{t-1} \\ F_{t-1} \end{bmatrix} + \dots + A_{p} * \begin{bmatrix} F_{t-p}^{*} \\ R_{t-p} \\ F_{t-p} \end{bmatrix} + u_{t}$$

$$F_{t}^{*} = \begin{bmatrix} F_{1t}^{*} & F_{2t}^{*} & F_{3t}^{*} \end{bmatrix}$$
$$F_{t} = \begin{bmatrix} F_{1t} & F_{2t} & F_{3t} & F_{4t} \end{bmatrix}$$

Reduced Form

$$\begin{bmatrix} F_t^* \\ R_t \\ F_t \end{bmatrix} = B \cdot \begin{bmatrix} F_{t-1}^* \\ R_{t-1} \\ F_{t-1} \end{bmatrix} + \begin{bmatrix} u_t^* \\ u_t^R \\ u_t \end{bmatrix}$$

Monetary policy instrument variable

R = 3 month EURIBOR (E3M)

FAVAR model – VAR model statistical tests

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-1691.420	NA	0.531194	22.07039	22.22815	22.13447
1	-1192.859	938.8488	0.001882	16.42674	17.84661*	17.00349
(2)	-1083.854	193.9444	0.001056*	15.84225*	18.52424	16.93167*
3	-1036.837	78.76764	0.001337	16.06282	20.00691	17.66490
4	-992.7557	69.27084	0.001786	16.32150	21.52771	18.43625
5	-950.1933	62.46171	0.002484	16.59991	23.06823	19.22733
6	-869.5745	109.9348*	0.002164	16.38408	24.11451	19.52416
7	-819.2188	63.43512	0.002890	16.56128	25.55382	20.21403
8	-770.0310	56.85337	0.004090	16.75365	27.00829	20.91906

p = 2

The system is stable

VAR model

$$\begin{bmatrix} F_{1,t}^{*} \\ F_{2,t}^{*} \\ F_{3,t}^{*} \\ E3M_{t} \\ F_{1,t} \\ F_{3,t}^{*} \end{bmatrix} = B_{1} \begin{bmatrix} F_{1,t-1}^{*} \\ F_{2,t-1}^{*} \\ F_{3,t-1}^{*} \\ E3M_{t-1} \\ F_{1,t-1}^{*} \\ F_{2,t-1}^{*} \\ F_{3,t-1}^{*} \end{bmatrix} + B_{2} \begin{bmatrix} F_{1,t-2}^{*} \\ F_{2,t-2}^{*} \\ E3M_{t-2} \\ F_{3,t-2}^{*} \end{bmatrix} + \begin{bmatrix} u_{1,t}^{*} \\ u_{2,t}^{*} \\ u_{3,t}^{*} \\ u_{3,t}^{*} \end{bmatrix}$$

FAVAR model – VAR model restrictions

V

 \mathcal{V}

Identification scheme

$$Au_t = B\varepsilon_t$$

$$ec(A) = R_A \gamma_A + r_A$$
$$ec(B) = R_B \gamma_B + r_B$$

u – equations residuals

 $\boldsymbol{\epsilon}$ - pure innovations

R_A, **R**_B –suitable fixed matrices r_A , r_B – vectors of fixed parameters γ_A , γ_B – vectors of free parameters

Restrictions

$$\begin{bmatrix} 1 & 0 & 0 \\ \alpha_{R^{*},F^{*}} & 1 & 0 \\ \alpha_{F,F^{*}} & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_{t}^{F^{*}} \\ u_{t}^{R^{*}} \\ u_{t}^{F} \end{bmatrix} = \begin{bmatrix} \lambda_{F^{*}} & 0 & 0 \\ 0 & \lambda_{R^{*}} & 0 \\ 0 & 0 & \lambda_{F} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{t}^{F^{*}} \\ \varepsilon_{t}^{R^{*}} \\ \varepsilon_{t}^{F} \end{bmatrix}$$

FAVAR model - Factors impulse responses

FAVAR model – Scheme

- 1. Extract the unobservable factors from the set of variables specific to the Euro Area Matlab
- 2. Extract the unobservable factors from the set of variables specific to Romania Matlab
- 3. Creat a matrix consisting in the extracted factors and add the monetary policy variable
- 4. Import the matrix into Eviews
- 5. Estimate the optimal VAR model Eviews
- 6. Impose restrictions under economic reasoning Eviews
- 7. Obtain the impulse response function for the unobservable factors Eviews
- 8. Import the impulse response function in Matlab
- 9. Multiply with the loadings matrices, obtained in the same time with the extraction of factors Matlab

10. Obtain the impulse responses for the economic variables of interest to a shock in 3M Euribor

Total Industrial production

Manufacturing Industrial production

Total Construction Index

Construction Index: Civil Engineering

Retail Trade

Total HICP

Unemployment rate

Economic Sentiment

Exports

Manufacturing Industrial production

Consumer Goods Industrial production

Total Construction Index

Construction Index: Civil Engineering

ROBOR 1Y

Retail Sales food, beverages and tobacco

Retail Sales of non-food products

Unemployment rate

Economic sentiment

HICP ALL

HICP food and non-alcoholic

Conclusions

	Quantitative
Euro Zone	 Increase in funding cost Industrial production and construction indicators suffer an impairment Decrease in consumption Increase in unemployment Depreciation of economic sentiment indicator
Romania	 Exchange rate appreciation Exports increase and Imports decrease Increased industrial production levels Consumption rises Unemployment rate reduces ROBOR reacts in the same direction Economic sentiment indicator improves

Conclusions

+

Qualitative

- Ability of using large number of economic variables by embedding them in a limited number of unobservable factors that describe a particular economy
- The possibility of analyzing the impulse responses of many economic variables, unlike standard VAR-SVAR models which are limited
- The possibility of imposing restrictions, according to economic reasoning
- Some results (their amplitude) are not according to economical theory
- Model based on a difficult methodology of factor extraction

References

Bai, J., Ng, S., (2002). Determining the factors in approximate factor models. In Econometrica, vol 70, no 1, 191-221.

Beckmann, E., Scheiber, T., Stix, H., (2011). *How the Crisis Affected Foreign Currency Borrowing in CESEE:* Microeconomic Evidence and Policy Implications. FEEI 2011 Q1

Benes, J., (2012). IRIS Toolbox Reference Manual

Benkovskis, K., Bessonovs, A., Feldkircher, M., Worz, J., (2011). *The Transmission of Euro Area Monetary Shocks to the Czech Republic, Poland and Hungary: Evidence from a FAVAR model*. In Focus on European Economic Integration Q3/11.

Bernanke, B.S., Boivin, J., Elisz, P., (2004). *Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach.* In Working Paper 10220, National Bureau of Economic Research, Cambridge, MA.

Blake, A., Mumtaz, H., (2012). *Technical Handbook – no 4 Applied Bayesian econometrics for central bankers*. Centre for Central Banking Studios, Bank of England, London, UK.

Boivin, J., Giannoni, M., (2008). *Global forces and monetary policy effectiveness*. In Working Paper 13736, National Bureau of Economic Research, Cambridge, MA.

Boivin, J., Ng, S., (2010). Are more data always better for factor analysis?. In Journal of Econometrics vol. 132, Issue 1, May 2006, pg 169 - 194

Canova, F., (2005). The transmission of US shocks to Latin America. In Journal of Applied econometrics 229 -251

Dedu, V., Stoica, T., (2004). *The impact of monetary policy on the romanian economy*. In Romanian Jurnal of Economic Forecasting – XVII (2), 71-83.

References

Kim, S., (2001). International transmission of U.S. monetary policy shocks: Evidence from VAR's. In Journal of Monetary Economics, vol. 48, pg 339 – 372

Liu, P., Mumtaz, H., Theophilopoulou, A., (2011). *International Transmission of shocks: a time-varying factor-augmented VAR approach to the open economy*, Bank of England.

Lopez, H., F., West, M., (2004). Bayesian Model Assesment in Factor Analysis. In Statistica Sinica 14 (2004), 41 – 67

Lutkepohl, H., (2005). New Introduction to Multiple Time Series Analysis. Springer

Mumtaz, H., Surico, P., (2009). The Transmission of International Shocks: A Factor Augmented VAR Approach.

Mumtaz, H., Zabczyk, P., Ellis, C., (2011). What lies beneath? Atime-varying FAVAR model for the UK transmission mechanism. In Working Paper Series no 1320/april 2011, European Central Bank.

Stock, H.J., Watson, M.W., (2002). *Forecasting using Principal Components From a Large Number of Predictors*. In Journal of the American Statistical Association, vol 97, no 460, Theory and Methods.

Stock, H.J., Watson, M.W., (2005). *Implications of dynamic factor models for VAR analysis*. In Working Paper 11467, National Bureau of Economic Research, Massachusetts Av, Cambridge, MA.

Stock, H.J., Watson, M.W., (2002). *Forecasting using principal components from a large number of Predicators*. In Journal of American Statistical Association, Dec. 2002, vol 97, no 460, Theory and Methods.

Vasishtha, G., Meier, P., (2011). The impact of the Global Business Cycle on Small Open Economies: a FAVAR Approach for Canada. In Bank of Canada Working Paper 2011-2, International Economic Analysis Department, Bank of Canada, Ottawa, Ontario, Canada.

http://ec.europa.eu/economy_finance/publications/qr_euro_area/2014/. *Focus: Cross-border spillovers in the euro area*. In Quarterly Report in the Euro Area.

Used Software:

- 1. Microsoft Office 2013
- 2. Matlab 2012a
- 3. Eviews 8 Student Version

Thank you!