THE ACADEMY OF ECONOMIC STUDIES DOCTORAL SCHOOL OF FINANCE AND BANKING

DISSERTATION PAPER

SUPERVISOR: PhD. Professor MOISA ALTAR

> MSc STUDENT: REBEDIA C VIORELA MARINELA

Bucharest, 2014

THE ACADEMY OF ECONOMIC STUDIES DOCTORAL SCHOOL OF FINANCE AND BANKING

Complex nonlinear dynamics of financial time series. An empirical analysis using chaos theory

SUPERVISOR: PhD. Professor MOISA ALTAR

> MSc STUDENT: REBEDIA C VIORELA MARINELA

Bucharest, 2014

CONTENT

ABS	STRACT8
I.	INTRODUCTION
II.	LITERATURE REVIEW8
III.	EMPIRICAL METHODOLOGY FOR THE ANALYSIS
3.	1. Metric Tools10
	3.1.1. The BDS test
	3.1.2. Rescaled range analysis and Hurst exponent
3.	2. Topological tests: Recurrence Analysis13
	3.2.1. Recurrence Plot
	3.2.2. Recurrence Quantification Analysis
IV.	AN EMPIRICAL ANALYSIS USING CHAOS THEORY21
4.	1. Data21
4.	2. Empirical results21
	4.2.1. The BDS test results
	4.2.2. The Rescaled Range analysis results
	4.2.3. The Rcurrence Analysis results
CO	NCLUSIONS43
RE	FERENCES45
API	PENDIX

ABSTRACT

This paper presents an effort to implement metric and topological tools, to test for the presence of nonlinear dependence and deterministic chaos, in the returns series for eight stock market indices. Chaos theory might be useful in explaining the dynamics of financial markets, since chaotic models are capable of exhibiting behaviour similar to that observed in real financial data. In this context, the scope of this research is to provide an insight into the role that nonlinearities and, in particular, chaos theory may play in explaining the dynamics of financial markets.

Based on the following chaos tests: BDS test, Hurst exponent using R/S analysis, Recurrence Plots and Recurrence Quantification Analysis, the overall result of this study suggests that the returns series do not follow a random walk process. Rather it appears that the daily returns are serially correlated and the estimated Hurst exponents are indicative of marginal persistence. Result from the test of independence on filtered residuals suggests that the existence of nonlinear dependence, at least to some extent, can be attributed to the presence of conditional heteroskedasticity. It appears, therefore, that GARCH-type models can adequately explain some, but not all, of the observed nonlinear dependence in the data. Further, we find evidence to support the proposition that returns are generated by a chaotic system in five out of eight cases. Presence of chaos in market indices implies that profitable nonlinearity based trading rules may exist at least in the short-run. Finally, fairly contrary to the findings of previous studies, rejection of random walk hypothesis offers some possibility of returns predictability.

I. INTRODUCTION

The main aim of this study is to investigate the presence of nonlinear dependence and deterministic chaos in daily returns on eight stock market indices by contrasting the random walk hypothesis with chaotic dynamics. More specifically, I attempt to test for long-range dependence, nonlinear structure and chaos in both developed and emerging markets by investigating if daily returns series of stock market indices show any sign of biased-random walk and chaotic behavior.

Over the years, movements in stock prices have fascinated not only the speculative traders, but also the academicians and policy makers. For the last four decades, the efficient market hypothesis (EMH) has been the dominant theory in the financial markets. Many studies have been conducted to test the theory. Under the EMH, stock returns processes should be random. Market efficiency idea mentions that prices fully reflect all information and price movements do not follow any patterns or trends. That is, past price movements cannot be used to predict the future price movements but follow what is known as a random walk, an intrinsically unpredictable pattern. The idea that stock price variations are generated by a random process with no long-term memory has long been prominent in international and quantitative finance research. Under this approach, it was believed that stock returns are independent and identically distributed (IID) random variables. Presence of this traditional belief is also reflected in the assumptions of prominent asset pricing theories such as Sharpe-Lintner model of market equilibrium and the Black-Scholes theory of option pricing. The assertion of random walk seemed indisputable not only on empirical justifications but also for apparently strong theoretical reasons - namely, consistency with the efficient market paradigm (Abhyankar, Copeland, & Wong, 1997). Validity of the efficient market hypothesis in real world actually precludes the possibility that market players can generate higher returns from using trading rules. Interestingly, empirical findings of earlier studies have, by and large, confirmed the validity of random walk (Fama, 1970).

However, the pioneering work of Mandelbrot (1963) challenged this classical conviction by establishing that increments of stock prices or return variations did indeed possess a long-memory, which may be best described by fractional Brownian motion. Further, Rogers (1997) countered the traditional random walk hypothesis much strongly by establishing that under the condition of fractional Brownian motion (when Hurst exponent $H \neq 0.5$), arbitrage opportunities and monetary

profits can be generated from financial markets without taking any substantial risk, which is certainly anathema to the prominent financial theory. Following this line of argument, an increasing number of studies using chaotic and nonlinear estimation techniques for modeling financial data have highlighted the nonlinear deterministic behaviour of stock prices. These findings strongly and collectively suggest that stock prices may be more predictable than it was previously thought under the random walk approach. In other words, adherents of biased-random walk approach believe that seemingly random stock price and returns sequences may not be random and there are reasons to believe that they may arise from deterministic nonlinear dynamical systems, instead.

The discovery of nonlinear dependence and deterministic chaos in financial data has altered our traditional view of the erratic behaviour of financial variables by providing an entirely different perspective to analyze financial data moving well beyond the realm of linear paradigm and random walk approach of stock price movements. Nonlinear deterministic systems with a few degrees of freedom can create output signals that appear complex and mimic stochastic signals from the point of view of conventional time series analysis but are chaotic. Chaotic systems are complex systems which belong to the class of deterministic dynamical systems. They are detected and used in a lot of fields for control or forecasting. Deterministic chaos has been rigorously and extensively studied by mathematicians and other scientists. It is almost impossible to give a precise mathematical definition of deterministic chaos that encapsulates everything in the diverse literature. Chaos is said to be an irregular oscillatory process broadly characterized by three conditions: nonlinearity, fractal attractor, and sensitive dependence on initial conditions (SDIC) (Faggini, 2011). A unique feature of chaotic system is that it can generate large and apparently random fluctuations, quite similar to the sudden ups and downs sometimes seen in the stock market. Interestingly, stochastic models explain that many of these sudden fluctuations are actually caused by external random shocks. However, in a chaotic system these abrupt fluctuations are considered to be internally generated as part of the deterministic process (Gilmore, 1996). This makes a strong case for the application of chaotic dynamic to model and explain nonlinearity in financial time series. Although chaos is highly unpredictable, its deterministic nature offers good opportunity for profitable forecast at least in the short-run. However, forecasting over long horizon is not possible mainly because of the SDIC property of a chaotic system.

Researchers in economics and finance have been interested in testing nonlinear dependence and chaos for almost three decades. A wide variety of reasons for this interest have been suggested, including an attempt to improve the forecasting accuracy of linear time series models and to better explain the dynamics of the underlying variables of interest using a richer class of models than that permitted by limiting the set to the linear case. The issue of whether a financial series is indeed chaotic may not be of great importance to a financial forecaster who is only interested in adjusting dynamic trading strategies according to apparent predictability in time series. During these three decades the search for chaos in economics has gradually became less enthusiastic, as little or no empirical support for the presence of chaotic behaviours in economics has been found. The literature did not provide a solid support for chaos as a consequence of the high noise level that exists in most economic time series, and the relatively small sample sizes of data.

Against this background, in the present study I attempt to investigate nonlinear and chaotic structure in daily returns series of market indices. The motivation for undertaking this study is not only the dearth of research in this domain but also the potential implications of such a study for players in these markets. Detection of a deterministic chaos would mean an opportunity for hedgers, speculators as well as arbitrageurs to play the markets better.

This paper offers several contributions to the existing literature. Although there are many studies on this issue, covering different sample periods and markets, but to my knowledge, this is one of the first attempts to investigate chaotic structure in both developed and emerging markets. The search for chaos in financial markets has been mostly restricted to stock markets and in too developed countries. However given the very different institutional features of financial markets in developing countries, it is important to explore the possibilities of such markets exhibiting chaotic behavior. Financial markets in developing countries are less mature as compared to those in developed countries, and the implications of complex nonlinear behavior could be significant for traders, institutional investors for devising suitable trading strategies. Second, instead of performing a direct test for chaos, I apply different techniques to investigate the underlying data generating process. These tests will help investigate the adequacy of generally applied linear or nonlinear econometric models for forecasting these financial time series. Finally, the study of chaotic dynamic will help determine the degree of predictability and efficiency in financial markets.

The rest of the paper is organized as follows. Section 2 presents a brief review of literature. Section 3 discusses empirical methodologies and provides a brief account of tests used in the study. Section 4 presents empirical results. The final section provides concluding observations based on the findings of the study.

II. LITERATURE REVIEW

The efficient market hypothesis and the random walk approach to explain the time series behaviour of stock prices have been in the centre of attention for years. There are many studies supporting the EMH in the literature (Kendall, 1953; Brealey, 1970; Cunningham, 1973; Brock, 1987). These studies on the United Kingdom and Canadian stock markets, based on the assumption that stock market price changes are i.i.d., detect the weak form market efficiency and find no evidence of chaos in macroeconomic time series.

However, the pioneering work of Mandelbrot (1963) challenged the random walk theory and initiated a new debate by bringing the concept of long-memory and biased random walk into perspective.

In 1965, Fama admitted that linear modeling techniques have limitations as they are not sophisticated enough to capture complicated "patterns" which chartists claim to see in stock prices.

The recent empirical literature has mainly focused on testing for the presence of longmemory, nonlinear dependence and chaos in financial data by using new techniques and models indicative of complex dynamics (Abhyankar, Copeland, and Wong, 1995; Abhyankar, 1997).

Although some studies have produced conflicting results, but now a broad consensus has emerged that nonlinear structure in financial time series is a somewhat realistic phenomenon (Brock, Hsieh, & LeBaron, 1992). The literature, especially after the earlier findings of nonlinear dependence in returns by Hinich and Patterson (1985) and Frank and Stengos (1989), has seen many such studies. In general, recent studies have consistently documented strong evidence of nonlinearity in the returns of various assets. Studies applying tests based on nonlinear dynamics have also concluded that residuals of filtered stock returns are not IID and, therefore, market returns do not follow random walk process. While considering the case of long-memory, contrary to the traditional belief, many recent studies have reported strong evidence of long-range dependence in the returns of various assets (Cajueiro and Tabak, 2009; Helms et al., 1984). Using the classical rescaled-range analysis, Howe et al. (1999) find strong evidence of long-range nonlinear deterministic structure in the returns of the Japanese, Singaporean, Korean, and Taiwanese indices with cycle length ranging from 3 to 4 years. However, contrary to these findings, Lo (1991), Cheung and Lai (1995) and Jacobsen (1996) failed to find any evidence of long-range dependence in stock returns for some European countries, the United States and Japan.

As far as the presence of nonlinear deterministic and chaotic structures in market returns are concerned, the published evidence is rather mixed. For example, studies such as Frank and Stengos (1989), Hsieh (1991), Blank (1991) and DeCoster, Labys, and Mitchell (1992), have found strong evidence of nonlinear dependence and chaotic structure in economic and financial time series whereas Kosfeld and Robe (2001) for German bank stock returns and Opong, Mulholland, Fox, and Farahmand (1999) for London Financial Times Stock Exchange found that low order GARCH models are sufficient to explain the existing nonlinearity in the data. Similarly, in his study Brooks (1998) reported strong evidence of nonlinearity but failed to find any significant evidence of deterministic chaos in the data. Scheinkman and LeBaron (1989) study U.S.A. weekly returns on the Center for Research in Security Prices (CRSP) value-weighted index, employing the BDS statistic, and find rather strong evidence of nonlinearity and some evidence of chaos. Brock, Hsieh and LeBaron (1991) concluded that the evidence for the presence of deterministic low-dimensional chaotic generators in economic and financial data is not very strong.

Nevertheless, some recent studies have documented encouraging evidence of chaos in exchange rate data. For example, in their study Serletis and Gogas (1997) and Scarlat, Stan, and Cristescu (2007) found consistent evidence of chaotic dynamics in various markets.

In a working paper, Wei and Leuthold (1998) looked at six agricultural futures markets corn, soybeans, wheat, hogs, coffee and sugar—and found that five of them (all except sugar) were chaotic processes.

Andreou, Pavlides and Karytinos (2000) examined four major currencies against GRD and found evidence of chaos in two out of four.

Panas and Ninni (2000) found strong evidence of chaos in daily oil products for the Rotterdam and Mediterranean petroleum markets.

It is clear that while there is a broad consensus on the presence of nonlinear dependence in market returns, the issue is still unsettled for chaos in financial data. Furthermore, there is hardly any study on emerging markets to explain the time series behaviour of stock returns. Therefore, this study attempts to fill this gap by providing some additional evidence from the emerging countries.

III. EMPIRICAL METHODOLOGY FOR THE ANALYSIS

The fast development of computer resources available to the scientist community and the parallel growing bulk of theoretical knowledge about complex dynamics have allowed many researches to look for nonlinear dynamics in data whose evolution linear ARMA models are unable to explain in a satisfactory manner. The methods involved in Nonlinear Time Series Analysis can be classified into metric, dynamical, and topological tools. The metric approach depends on the computation of distances on the system's attractor, and it includes Grassberger-Procaccia correlation dimension and BDS test. The dynamical approach deals with computing the way nearby orbits diverge by means of estimating Lyapunov exponents. Topological methods are characterised by the study of the organisation of the strange attractor, and they include recurrence plots.

In practice, various criteria and methods are used to detect nonlinear structure and chaos in the data. Given that the study of chaos is relatively new in financial research, there is no single commonly accepted statistical test to determine precisely the nature of nonlinearity and chaotic structure in the data (Gilmore, 1996). A best alternative approach, therefore, would be to use all available criteria for analyzing the behaviour of stock price or return time series. The tests applied in this study are widely used in literature.

3.1. Metric Tools

3.1.1. The BDS test

Brock, Dechert, LeBaron, and Scheinkman (1996) developed a powerful test for independence and identical distribution based on correlation function developed by Grassbeger and Procaccia (1983). This test is also known as BDS test for nonlinear dependence between points on a reconstructed attractor. The BDS test tests the null hypothesis of whiteness (IID observations) against an unspecified alternative using a nonparametric technique.

In fact, BDS test is not considered to be a direct test for chaos. It is useful because it is a well defined, and easy to apply test which has power against any type of structure in a series. This feature can be viewed as both a cost and a benefit. On the one hand it can detect many types of nonlinear dependence that might be missed by other tests. On the other hand, a rejection using this

test is not very informative. One extension of this test is to use it as a residual diagnostic, as a model selection tool to obtain some information about what kind of dependency exists after removing linear dependency from the data. However, it is possible to use the BDS test to indirectly search for nonlinear dependence which is necessary but not sufficient condition for chaos. The test is applied to residuals to check if the best-fit model for a given time series is a linear or nonlinear model.

Under the null hypothesis of whiteness, the BDS statistic is given by:

W(N, m,
$$\varepsilon$$
) = $\sqrt{N} \frac{C(N, m, \varepsilon) - C(N, 1, \varepsilon)^m}{\widehat{\sigma}(N, m, \varepsilon)}$

where $\hat{\sigma}$ (N, m, ε) is an estimate of the standard deviation of C(N,m, ε) - C(N,1, ε)^m.

The correlation function asymptotically follows standard normal distribution N(0,1):

$$\lim_{N\to\infty} W(N,m,\varepsilon) \sim N(0,1), \qquad \forall \ m,\varepsilon$$

Moving from the hypothesis that a time series is IID, the BDS tests the null hypothesis that $C(N, m, \varepsilon) = C(N, 1, \varepsilon)^m$, which is equivalent to the null hypothesis of whiteness against an unspecified alternative.

Both positive as well as negative values of the test statistic are taken as an indication of non-IID behaviour. BDS statistics takes a positive value if the probability of any two m-histories (x_t , x_{t+1} ,..., x_{t+m-1}) and (x_s , x_{s+1} ,...., x_{s+m-1}) of being "close" together is higher than that of mth power of the any two points x_t and x_s . In other words, a significant and positive BDS statistics indicates that certain patterns such as "clustering" are too frequent compared to a true random process whereas a significant and negative BDS test statistic indicates that certain patterns are too infrequent compared to a true random process.

If series are IID so that linear or even conditional heteroskedasticity can describe the relations between data, chaotic tests will not be required. However, if this is not the case, investigating the main properties of chaoticity should not be disregarded.

Because it is based on the correlation dimension, the BDS test suffers from the same limitations. In particular, its performance depends on the size of data sets (N) and ε , even though Brock (1991) showed how the statistics of this test are correctly approximated in finite samples if:

- the number of data N is greater than 500.
- ε lies between 0.5 σ and 2 σ , where σ is the standard deviation of the series.
- the embedding dimension m is lower than N/200.

3.1.2. Rescaled range analysis and Hurst exponent

The EMH assumes that all investors immediately react to the new information. Some recent studies, however, argue that this is not always true in the market. For example, Peters (1994) argues that most people do not react immediately on the arrival of new information. Instead they wait for confirming the information and do not react until a trend is clearly visible in the market. Therefore, there will be an uneven assimilation of information and this will cause stock price movements to follow a biased-random walk rather than pure random walk. If this is true, the possibility of biased-random walk implies that there is memory or temporal dependence in the underlying series.

In literature, a tool extensively used for testing long-term memory and fractality of a time series is the R/S analysis. In the present study, we broadly follow Peters (1994) to conduct R/S analysis.

In the first stage, the time period is divided into A contiguous sub-periods of length n such that $A \times n=N$ where N is the length of the series N_t. We then label each sub period I_a, a=1,2,3,4,...,A. Each element in I_a is labeled N_{k,a} such that k=1,2,3,4,...,n. For each I_a of length n, the average value, e_a, is defined as:

$$e_a = \left(\frac{1}{n}\right) \times \sum_{k=1}^n N_{k,a}$$

In the next stage, the range R_{Ia} is defined as the maximum less the minimumvalue, $X_{k,a}$, within each sub-period Ia given by $R_{Ia} = \max(X_{k,a}) - \min(X_{k,a})$, given that $1 \le k \le n$, and $1 \le a \le A$, where $X_{k,a} = \sum_{i=1}^{k} (N_{i,a} - e_a)$, k=1,2,...,n, is the time series of accumulated departures from mean value for each sub-period.

Further, each range R_{Ia} is normalized by dividing by the sample standard deviation S_{Ia} corresponding to it given by:

$$S_{Ia} = \left[\left(\frac{1}{n}\right) \times \sum_{k=1}^{n} \left(N_{k,a} - e_a\right)^2 \right]^{0.5}$$

the average R/S values for the length n is defined as

$$\left(\frac{R}{S}\right)_n = \left(\frac{1}{A}\right) \times \sum_{a=1}^A (R_{\mathrm{Ia}}/S_{Ia})$$

Now the final stage involves applying an ordinary least square (OLS) regression with log(n) as the independent variable and (R/S)n as the dependent variable. Hurst (1951) show that R/S could be estimated by the following empirical relationship, generally referred to as Hurst's Empirical Law:

$$(R/S) = a \times (N)^{H}$$

where a is a constant and H equals the Hurst exponent. Now after obtaining logs of both sides of the Hurst's equation, we obtain:

$$\log (R/S) = H \times \log (N) + \log (a).$$

The Hurst exponent, H, is the slope coefficient obtained from this regression. For the classification of time series, the Hurst exponent can be interpreted as follows:

- a Hurst exponent of 0.5 indicates that the series behaves in a manner consistent with the random walk or nondeterministic process;
- an H of greater than 0.5 indicates 'persistence' or trend-reinforcing series;
- an H of less than 0.5 indicates 'antipersistence' or ergodic series.

3.2. Topological tests: Recurrence Analysis

The failure to find convincing evidence for chaos in economic and financial time series redirected the interest to additional tests that work with small data sets and that are robust against noise. This goal seems to be reached by topological tools based on topological invariant testing procedure. Compared to the existing metric and dynamical classes of testing procedures, these tools could be better suited to testing for chaos in financial and economic time series and to provide information about the underlying system responsible for chaotic behaviour.

The topological approach to testing for chaos has origins as far back as Poincaré (1892) and attempts to determine how the unstable periodic orbits of the strage attractor are interwined. Topological tools are characterised by studying the organisation of the strange attractor because they exploit an essential property of a chaotic system, i.e. the tendency of the time series to nearly, although never exactly, repeat itself over time. This property is known as the recurrence property.

The processes of stretching and compression are responsible for organising the strange attractor in a unique way and if one can determine how the unsable periodic orbits are organised, we can identify the stretching and compressing mechanisms responsible for the creation of the strange attractor. Once these mechanisms have been identified, a geometric model can be constructed, which describes how to model the stretching and squeezing mechanisms responsible for generating the original time series. That is to say, topological tests may not only detect the presence of chaos (the only information provided by the metric class of tests), but can also provide information about the underlying system responsible for the chaotic behavior.

Unlike the metric approach, as the topological method preserves time ordering, that's the temporal correlation in a time series in addition to the spatial structure of the data, where evidence of chaos is found, the researcher may proceed to characterise the underlying process in a quantitative way.

An example of these topological tests is Recurrence Analysis. Recurrence Analysis is composed by the Recurrence Plot (RP) developed by Ekmann (1987), the graphical tool that evaluates the temporal and phase space distance, designed to locate hidden recurring patterns, nonstationarity and structural changes, and Recurrence Quantification Analysis (RQA), the statistical quantification of RP.

3.2.1. Recurrence Plot

Recurrence plots are graphical devices specially suited to detect hidden dynamical patterns and nonlinearities in data. With recurrence plots, one can also graphically detect structural changes in data or see similarities in patterns across the time series under study. The fundamental assumption underlying the idea of the recurrence plots is that an observable time series (a sequence of observations) is the realization of some dynamical process, the interaction of the relevant variables over time.

As remarkable as it seems, it has been proven mathematically that one can recreate a topologically equivalent picture of the original multidimensional system behavior by using the time series of a single observable variable (Takens, 1981). The basic idea is that the effect of all the other (unobserved) variables is already reflected in the series of the observed output. Furthermore, the rules that govern the behavior of the original system can be recovered from its output.

The starting point of the RPs is based on the time delay method through which the original series is transformed into a set of m-histories. The Recurrence Plot is a two dimensional representation of those m-histories whose coordinates are the present and lagged values of the series.

The original series is transformed into an m-dimensional system that, depending on the fulfilment of certain conditions, is topologically equivalent to the original system from which the series was supposedly determined. The one-dimensional signal is expanded into an m-dimensional phase space by substituting each observation with vector:

Yi = {
$$x_i, x_{i-d}, x_{i-2d}, ..., x_{i-(m-1)d}$$
}

As a result, we have a series of vectors:

$$Y = \{y(1), y(2), ..., y(N - (m - 1)d)\}$$

where N is the number of observations, m is the embedding dimension and d is the delay time.

Time delay determines the time separation or predictability of the components in the reconstructed vectors of the system state. It should be chosen so that the elements in the embedding vectors are no longer correlated, thus subsequent analysis would reveal spatial (or geometrical) structures.

The embedding dimension determines the number of the components in the reconstructed vector of the system state. It should be large enough to unfold the system trajectories from self-overlaps, but not too large as the noise will amplify.

If the unknown system that generated $\{x_t\}_{t=1}^n$ is N-dimensional, and provided that embedding dimension, if $m \ge 2n+1$, the set of m-histories recreates the dynamics of the data-generating system and can be used to analyse its dynamics. However, the sequence of embedded vectors is useful only if parameters m and d are properly chosen by using appropriate methods.

Next, a symmetric matrix of distances (e.g., Euclidean distances) can be constructed by computing distances between all pairs of embedded vectors. By using an appropriate norm and fixing a threshold ε that determines if vectors x(i) and x(j) are sufficiently close together – distance between them below or equal to ε - we obtain a recurrence matrix formally expressed as following:

$$R(i, j) = H(\varepsilon ||x(i) - x(j)||)$$
 for i, j = M

where M = N-(m-1)d, H is the Heaviside function, and || || is a norm, generally Euclidian. The matrix R consists of values 0 (no recurrence) and 1 (recurrence). More formally:

$$R(i,j) = \begin{cases} 0, \text{if } ||x(i) - x(j)|| > \epsilon \\ 1, \text{if } ||x(i) - x(j)|| \le \epsilon \end{cases}$$

The recurrence plot relates each distance of such a matrix to a colour (e.g., the larger is the distance, the "cooler" is the colour). Thus, the recurrence plot is a solid rectangular plot consisting of pixels whose colours correspond to the magnitude of data values in a two-dimensional array and whose coordinates correspond to the locations of the data values in the array. Generally dark colour marks nonzero values, that is, short distances, and a light colour zero values, that is, the long distance.

Both axes of the RP are time axes and show rightwards and upwards (convention). Vectors compared with themselves necessarily compute to distances of zero, which means that by definition the RP always has a black main diagonal line, the line of identity and it is symmetric with respect to the main diagonal, i.e. $Ri, j \equiv Rj, i$.

This graphic tool shows different structures depending on the nature of the series under study. In particular, it is capable of detecting the time recurrence patterns underlying deterministic systems (whether they are chaotic or not). Non-chaotic deterministic systems exhibit very simple regular structures, while the RPs of chaotic systems also show a certain regularity but with more complex and denser features. On the other hand, the RPs obtained from purely random systems do not show distinguishable patterns, appearing as a cloud of points with no apparent structure.

To illustrate the basic ideas behind RP some examples by Visual Recurrence Analysis (VRA) are used. In VRA, a one-dimensional time series from a data file is expanded into a higherdimensional space, in which the dynamic of the underlying generator takes place. This is done using a technique called "delayed coordinate embedding", which recreates a phase space portrait of the dynamical system under study from a single (scalar) time series. The idea of such reconstruction is to capture the original system states at each time we have an observation of that system output.

The first recurrence plot that VRA shows can be a beautiful picture, but absolutely uninformative. We must choose a suitable embedding dimension and an adequate time delay. To choose the appropriate time delay, we can compute the "average mutual information function", as an alternative to the classical autocorrelation function; the latter detects linear correlations, but the former is useful to detect both linear and non-linear correlations. The time delay should be chosen such that the elements in embedding vectors are no longer correlated, thus subsequent analysis would reveal spatial or geometrical structures. We can also use a procedure called "false nearest neighbours method" to find the optimal embedding dimension.

Once the dynamical system is reconstructed in a manner outlined above, a recurrence plot can be used to show which vectors in the reconstructed space are close and far from each other. This way one can visualize and study the motion of the system trajectories and infer some characteristics of the dynamical system that generated the time series.

If the analysed time series is deterministic, then the recurrence plot shows short line segments parallel to the main diagonal.

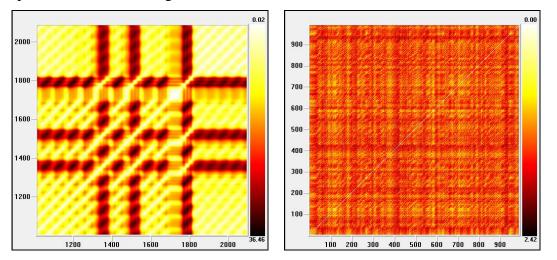


Figure 1. Lorenz attractor

Figure 2. White noise

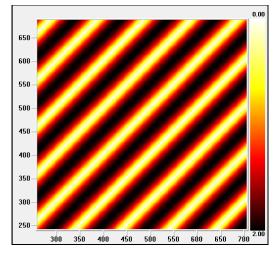


Figure 3. Sine wave

As an illustration, Figure 1 shows the recurrence plot from the (chaotic) Lorenz attractor, for a time delay d = 17 (selected through the method of average mutual information) and an embedding dimension m = 3 (selected through the false nearest neighbours method). Figure 2 shows the recurrence plot from a Gaussian white noise, for d = 1 and m = 12 and figure 3 shows the recurrence plot from a Sine wave, for d = 25 and m = 2. All figure have been attained using VRA.

Recurrent points in Figure 1 for the Lorenz attractor form distinct short diagonals parallel to the main diagonal. The upward diagonal lines result from strings of vector patterns repeating themselves multiple times down the dynamics. This type of recurrent structure indicates that the dynamics is visiting the same region of an attractor at different times; therefore, the presence of diagonal lines indicates that deterministic rules are present in the dynamics. The set of lines parallel to the main diagonal is the signature of determinism.

Alternatively, in Figure 2, recurrence points for the white noise are simply distributed in a homogeneous random pattern - a cloud of points, signifying that a random variable lacks of deterministic structures.

Diagonal structures show (Figure 3) the range in which a piece of the trajectory is rather close to another piece of the trajectory at different times. From the occurrence of lines parallel to the diagonal in the recurrence plot, it can be seen how fast neighboured trajectories diverge in phase space. These lines would not occur in a random as opposed to deterministic process. Thus, if the analysed time series is chaotic, then the recurrence plot shows short segments parallel to the main diagonal: chaotic behaviour causes very short diagonals, whereas deterministic behaviour causes longer diagonals (Figure 1 vs. Figure 3).

This procedure has some advantages such as simplicity of implementation, robustness to sample length, high dimensionality, noisy dynamics in the underlying equations of motion and fewer prior requirements of the database used. RP analysis is independent of limiting constraints such as data set size, noise, and stationarity; prewhitening of the data (linear filtering, detrending, or transforming the data to conform to any particular distribution) is not necessary as stationarity is not as essential like for the metric approach (Faggini, 2013).

Nevertheless some limitations are present. The first one is the construction of RPs and obtaining the Recurrence Matrix (RM). Because they are carried out on the basis of the time delay method, which requires previously fixing the values of the embedding dimension and the time delay, the results obtained from the RP application are sensitive to the values chosen for these parameters. The second one is the difficulty to interpret the graphical output of RP. Sometimes the signature of determinism, the set of lines parallel to the main diagonal might not be so clear (e.g., the size of the lines being relatively short among a field of scattered recurrent points), i.e., the recurrence plot could contain subtle patterns not easily ascertained by visual inspection; in this context, Zbilut and Webber (1992) propose the so called recurrence quantification analysis (RQA).

3.2.2. Recurrence Quantification Analysis

The RQA considers that it is possible to quantify the information supplied by RP and, using certain simple pattern recognition algorithms, to summarize the information in a set of indicators or statistics. In this way more objective information than that which could be derived from a purely visual analysis are obtained.

Considering that RP is symmetric, the set of indicators is obtained using the upper or lower triangular part of RP excluding the main diagonal. The main indicators are recurrence rate, determinism, averaged length of diagonal structures, entropy and trend.

Recurrence rate (REC): recurrence points percentage defined as:

$$\% REC = \frac{NREC}{NP} \times 100$$

where NREC is the number of recurrent points and NP is the total element of the recurrence matrix. This variable can range from 0% (no recurrent points) to 100% (all points recurrent). Roughly speaking REC is what is used to compute the correlation dimension of data.

Determinism rate (DET) is the ratio of recurrence points forming diagonal structures to all recurrence points. DET measures the percentage of recurrent points forming line segments that are parallel to the main diagonal and is calculated as

$$\% DET = \frac{NPD}{NREC} \times 100$$

where NPD is the number of points on lines parallel to the main diagonal caused by the existence of time correlation within the trajectory. Diagonal line segments must have a minimum length defined by the line parameter.

The presence of such diagonal structuring in RM is assumed to be a distinctive feature of deterministic structures, absence, instead, of randomness. DET is related with the determinism of the system: the greater the number of points is on line segments, the greater the general dependence of the series will be. Periodic signals (e.g. sine waves) will give very long diagonal lines, chaotic signals (e.g. Hénon attractor) will give very short diagonal lines, and stochastic signals (e.g. random numbers) will give no diagonal lines at all.

Maxline (MAXLINE) represents the averaged length of diagonal structures and indicates the longest line segments that are parallel to the main diagonal. Unlike the %DET counts all the points on the parallel lines equally regardless of their size, this indicator considers the length of the

different lines. This is a very important recurrence variable because it inversely scales with the the largest positive Lyapunov exponent (Eckmann et al., 1987; Trulla et al., 1996). Positive Lyapunov exponents gauge the rate at which trajectories diverge, and are the hallmark for dynamic chaos. Thus, the shorter the linemax, the more chaotic (less stable) the signal.

Entropy (ENT) (Shannon entropy) measures the distribution of those line segments that are parallel to the main diagonal and reflects the complexity of the deterministic structure in the system. ENT is a measure of signal complexity and is calibrated in units of bits/bin. Individual histogram bin probabilities are computed for each non-zero bin and then summed according to Shannon's equation. A high ENT value indicates a large diversity in diagonal line lengths; low values indicate small diversity in diagonal line lengths. For simple periodic systems in which all diagonal lines are of equal length, the entropy would be expected to be 0.0 bins/bin.

The value trend (TREND) quantifies the degree of system stationarity. It measures the paling of the patterns of RPs away from the main diagonal used for detecting drift and non-stationarity in a time series. It is calculated as a slope of the %REC as a function of the displacement of the main diagonal. If recurrent points are homogeneously distributed across the recurrence plot, TND values will hover near zero units. If recurrent points are heterogeneously distributed across the recurrence plot, TND values will deviate from zero units.

Laminarity (LAM) is analogous to %DET except that it measures the percentage of recurrent points comprising vertical line structures rather than diagonal line structures. The line parameter still governs the minimum length of vertical lines to be included.

Trapping time (TT) is simply the average length of vertical line structures.

IV. AN EMPIRICAL ANALYSIS USING CHAOS THEORY

4.1. Data

The empirical application in this paper is based on eight data sets representing the closing prices of stock indices, selected from both developed countries and emerging countries, namely: **BET-C** (Bucharest Stock Exchange - Romania), **BUX** (Budapest Stock Exchange - Hungary), **DAX** (Frankfurt Stock Exchange - Germany), **FTSE 100** (London Stock Exchange - United Kingdom), **FTSE MIB** (Milan Stock Exchange - Italy), **Nikkei 225** (Tokyo Stock Exchange - Janponia), **SOFIX** (Sofia Stock Exchange - Bulgaria) and **S&P 500** (New York Stock Exchange - USA).

The data used are on a daily basis covering the period January 2nd, 2002 to May 22th, 2014. In the sample period are included 3232 observations. Missing data were replaced by the arithmetic mean of the last two values available.

Based on the eight data sets collected, the prices were converted in daily returns. We apply the following transformation to the raw data before conducting statistical tests:

$$\mathbf{R}_{it} = \ln(\mathbf{P}_{i,t}) - \ln(\mathbf{P}_{i,t-1})$$

where: R_{it} is the rate of ruturn of stock index i at time t;

P_{i,t} este is the close price of stock index i at time t.

This transformation implements an effective detrending of the series. This method also provides an effective way to measure the continuously compounded rates of returns. For each set of data we have a number of 3231 calculated returns.

In the analysis were used the following programs: Eviews7, Matlab R2013a and VRA 4.9.

4.2. Empirical results

First we analyzed the behavior of daily returns. In the table below we present the characteristics of the data series.

The highest, and the lowest yield was obtained for the BUX index. If we compare the standard deviations, the most risky is BUX index trading and the least risky is FTSE 100 index trading.

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
Mean	0.000585	0.000305	0.000196	0.0000829	-0.000140	0.0000977	0.000499	0.000153
Median	0.000571	0.000449	0.000724	-0.0000441	0.000446	0.000312	0.000465	0.000663
Maximum	0.108906	0.131777	0.107975	0.093842	0.108742	0.094941	0.083878	0.109572
Minimum	-0.122582	-0.126489	-0.074335	-0.092646	-0.085991	-0.121110	-0.113600	-0.094695
Std. Dev.	0.015043	0.015918	0.015369	0.012297	0.015191	0.015194	0.013501	0.012772
Skewness	-0.675487	-0.138154	0.0048171	-0.134973	-0.041630	-0.642058	-0.506626	-0.202021
Kurtosis	12.85947	9.770674	8.034013	10.33820	8.012025	9.069276	11.87536	12.26718
Jarque-Bera	13332.5	6181.761	3412.821	7259.260	3382.767	5181.051	10742.91	11583.65
Probability	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Table 1. Descriptive statistics for daily returns

The coefficient of asymmetry (skewness) is negative for BET-C, BUX, FTSE 100, FTSE MIB, NIKKEI 225, SOFIX and S&P 500, which indicates that the distribution yields are asymmetrical to right and for DAX, it is positive, the distribution of returns is asymmetric to the left.

In all cases, it is observable that the daily returns have a high kurtosis, much greater than 3 (the kurtosis of the normal distribution) for all indices, reflecting the presence of a leptokurtotic distribution, sharper than a normal distibution with more values concentrated around the average values and more-tailed than a normal distibution.

Most financial assets have such a distribution. In a leptokurtotic distribution the probability of occurrence of an extreme event is higher then the probability involved in a normal distribution. So price valuation models can generate errors if it is assumed a normal distribution.

The distributions yield indexes are shown in **Appendix 3**. Analyzing the eight figures is immediately apparent that the empirical distribution of daily returns deviates from the normal distribution, being more elongated than that.

The null hypothesis of normality is strongly rejected by the Jarque-Bera test. The test confirms that the returns of market indices are not normally distributed. Test statistic is significant for a level of 1% confidence as the associated probability is 0% in all eight cases.

Using Quantile-Quantile chart (Q-Q Plot) to compare the empirical distribution of daily returns to a theoretical distribution (in this case the normal distribution) I have reached the same conclusion. If the empirical distribution is normal, the Q-Q graph result is the first bisector. For each series, the empirical quintiles chart indicates deviations from the normal line. (**Appendix 4**).

Also, it was necessary to analyze the evolution of daily returns. Figure 1 illustrates the variation of daily returns for BET-C in the sample period. Based on the figure below we can draw some conclusions.

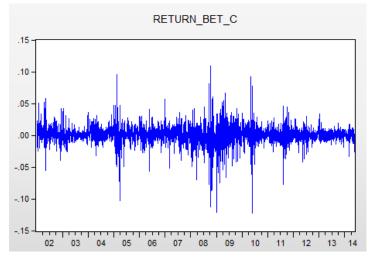


Figure 4. Evolution of BET-C returns

First, a simple visual inspection of the series indicates that yields presents two specific characteristics of nonlinear models (leverage and volatility clustering). Volatility is concentrated in short periods of time, indicating possible correlations between current and historical volatilities.

The series is heteroscedastic and volatility clustering phenomenon is present, alternating periods of low volatility followed by small variations with periods of high volatility followed by large variations in yields. The phenomenon is best observed after the global financial crisis occurrence, especially in the second half of 2008, when yields has the highest volatility.

The evolution of all indices are shown in **Appendix 5**. As can be seen from the graphs, all returns series show volatility clustering phenomenon (i.e. low values of volatility are followed by low values and high values are followed by other high values).

These features are consistent with other studies in literature on financial time series behavior. This manifestation of data is confirmed by autocorrelation function (ACF) and partial autocorrelation function (PACF) estimated up to lag 15. Since this phenomenon is specific to GARCH type models, the return series behavior could be captured by this type of models.

To check the hypothesis of stationarity of the return series we apply unit root tests to determine the order of integration. Stationarity tests used are: ADF (Augmented Dickey-Fuller) and PP (Phillips-Perron). The summary results of these tests are shown in Table 2.

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
ADF test statistic	-51.74986	-27.02303	-58.35544	-27.49092	-57.65096	-59.43818	-17.47361	-64.45599
1%	-3.432186	-2.565679	-2.565678	-2.565679	-2.565678	-2.565678	-2.565680	-2.565678
5%	-2.862237	-1.940922	-1.940922	-1.940922	-1.940922	-1.940922	-1.940922	-1.940922
10%	-2.567185	-1.616634	-1.616634	-1.616634	-1.616634	-1.616634	-1.616633	-1.616634
PP test statistic	-52.31744	-54.92960	-58.55270	-60.28837	-57.67984	-59.52710	-54.86382	-65.01303
1%	-3.432186	-2.565678	-2.565678	-2.565678	-2.565678	-2.565678	-2.565678	-2.565678
5%	-2.862237	-1.940922	-1.940922	-1.940922	-1.940922	-1.940922	-1.940922	-1.940922
10%	-2.567185	-1.616634	-1.616634	-1.616634	-1.616634	-1.616634	-1.616634	-1.616634

 Table 2. ADF and PP test results

Stationarity tests used have in the null hypothesis that the series analyzed contains a unit root, i.e. it is not stationary. As can be seen from the table above, for all the series the test statistic has a value lower than the critical value, at a level of significance of 5% and 1%, and the probabilities associated are less than 5% (**Appendices 6 and 7**), which means that the hypothesis of a unit root is rejected. Therefore return series used in the analyze are stationary. We can say that they are integrated of order 0.

An important problem posed by financial series is serial correlation of residuals. So we check if there is correlation in each of the eight rows of data. At first sight, analyzing autocorrelation functions (ACF) and partial autocorrelation functions (PACF) estimated up to lag 15 it can be seen that there is serial autocorrelation, but this is weak. Autocorrelation and partial autocorrelation coefficient vary within the range of -0,125 (S&P 500), and 0.107 (SOFIX). (Appendix 8).

Even if ACF and PACF graphs indicates some autocorrelation, autocorrelation is insufficiently argued at this point. To confirm the existence of autocorrelation is used Ljung-Box test. The test confirms the results of visual analysis. Q-test statistic is significantly different from zero for 6 of the 8 series returns analyzed up to lag 15 and the associated probability is 0% (except DAX and Nikkei 225), which means that at a level of relevance of 1% we can reject the null hypothesis of absence of serial correlation.

Autocorrelation analysis should be extended to square returns and absolute returns errors to check the presence of ARCH effects. Although the autocorrelation function for raw returns indicate a relatively low correlation, the ACF of square returns indicate significant correlation and persistence of second order moments. In **Annexes 9 and 10** the correlogram of these series are

presented. It can be seen that the autocorrelation has increased for all series. In addition, all autocorrelation coefficients are statistically significant for the first 15 lags and the test null hypothesis is rejected at a significance level of 1% for all series analyzed, confirming the existence of serial correlation, so of heteroscedasticity.

There has been increasing evidence of time varying volatility and deviations from normality in financial time series, and therefore, it is important to conduct a test that is robust to heteroskedasticity. We perform the variance ratio test of random walk.

An important property of all the random walk hypothesis is that the variance of the residual variable has to be a linear function of the time.

Considering RW1 $r_t = \mu + \varepsilon_t$, as returns are independent and follow the same distribution, we have that $\operatorname{Var}[r_t + r_{t-1}] = 2\operatorname{Var}[r_t]$. Therefore, we can determine whether the random walk hypothesis is plausible by checking variance ratio: $\operatorname{VR}(2) = \frac{\operatorname{Var}[r_t + r_{t-1}]}{2\operatorname{Var}[r_t]}$. If RW1 hypothesis is true, then this report should be significantly equal to one.

As can be seen from the table below, the variance ratio for each of the selected times to carry out the test, is less than 1. Also the overall test probability is below the confidence level of 1%. Therefore, we reject the null hypothesis that the series would follow a random walk model.

Based on VR (Variance Ratio) test the null hypothesis of random walk is strongly rejected for all return series considered, this means that daily returns can follow some predictable patterns.

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
Value	10.37315	13.78791	14.87617	13.90972	15.58898	16.01136	10.54322	12.46981
value	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
VR at period 2	0.537740	0.547839	0.494616	0.488516	0.500461	0.473389	0.492723	0.451375
VK at periou 2	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
VR at period 4	0.281595	0.23767	0.239734	0.219040	0.236411	0.236127	0.256709	0.224858
VK at period 4	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
VR at period 8	0.132905	0.127081	0.120224	0.115065	0.120067	0.121883	0.130626	0.106031
V K at period o	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
VP at pariod 16	0.067472	0.063326	0.060632	0.058527	0.058225	0.060024	0.063665	0.054117
VR at period 16	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)

 Table 3. The VR test results

This rejection of the null hypothesis of IID return observations indicates toward either an underlying chaotic process or a nonlinear stochastic process. In the next stage, we turn to discuss the results from the BDS test to determine the nature of dependence present in the data.

4.2.1. The BDS test results

We conduct the BDS test for the embedding dimensions from 2 to 5. Further, it is required to select a value for ε to conduct the BDS test. As pointed by Scheinkman and LeBaron (1989), the null hypothesis of IID will be accepted frequently irrespective of it being true or false, if the selected value of ε is too small. Therefore, it is recommended to conduct the test for a range of ε values. Following Brock et al. (1992), we conduct the test for a range of values of ε as 0.5, 1.0, 1.5 and 2.0 standard deviations of the data. A lower ε value represents a more strict criteria because points in the ε -dimensional space must be clustered closer together to meet the criteria of being 'close' in terms of the BDS statistic. Therefore, ε =0.5 σ indicates the most stringent test and ε =2.0 σ is the most relaxed criteria used for analysis purpose. The results are reported in table below.

3	m	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
	2	21.23900	9.40763	10.36483	12.43114	12.06333	5.39203	21.36927	11.22198
0.5	3	27.04612	11.47585	15.99321	17.70461	18.45617	8.301017	27.73256	16.76949
0.5	4	32.86570	13.40742	21.53942	22.75439	25.56062	11.16435	33.75821	21.49585
	5	39.86068	15.55492	27.02964	28.27511	33.90317	14.13351	40.81501	26.47854
	2	21.68286	10.53119	11.42678	13.85043	11.72176	5.47092	23.34487	12.40405
1.0	3	25.73022	12.94014	16.81059	18.86117	17.47996	8.572856	27.13938	17.86854
1.0	4	28.80250	15.07931	21.21927	23.04570	22.49917	11.36092	29.82042	21.81638
	5	31.88194	17.19407	24.80167	27.13201	27.36474	13.98566	32.53488	25.97915
	2	20.56651	11.63991	13.13240	14.82958	10.93500	7.34784	23.10543	13.83909
1.5	3	23.35373	13.90931	18.73351	19.24399	15.78295	10.67708	26.33341	18.78193
1.5	4	25.52706	16.14979	22.47758	22.42287	19.44707	13.15572	27.66137	22.15508
	5	27.01387	18.05562	25.14774	25.07492	22.59355	15.13433	28.75184	25.07561
	2	19.82528	11.93198	12.92377	14.92024	10.42079	9.97416	21.16839	15.33010
• •	3	21.90607	14.03261	18.31170	19.27442	14.68862	13.43247	24.13756	19.67866
2.0	4	23.42068	16.41710	21.66436	22.02076	17.75775	15.68964	25.13892	22.36626
	5	24.18678	18.06259	24.08048	24.10471	20.19292	17.30214	25.64310	24.23783

Table 4. The BDS test results BDS

It is clearly observable that the BDS test conducted on raw returns strongly reject the null of IID in every case. It is noteworthy that the rejection of the null by the BDS statistic for raw returns does not necessarily indicate that the time series exhibits a low complexity chaotic behaviour. Rather, the rejection of IID null can be consistent with any types of non-IID behaviour such as linear dependence, nonlinear stochastic process (ARCH-type models), and chaos (nonlinear deterministic process).

In the first stage of analysis, we remove the linear dependence in the data by fitting a best linear model and then conduct the BDS test on linearly filtered residuals to test whether filtered residuals are IID or not. For this purpose, we estimated through the "least squares method" several ARMA(m,n) models.

Before estimating this models is necessary to establish the specifications of mean equation. Based on the autocorrelation coefficients (autocorrelation function) and partial correlation coefficients (partial autocorrelation function) I have determined the autoregressive starting models. To choose the right model, namely for the choice of orders m and n, I used the information criterias Log likelihood, Akaike (Akaike Information Criterion, AIC) and Schwarz (Schwartz Bayesian Criterion, SBC). These indicators are used when you have to choose an equation from severals. According to the information criterion is selected the specification for which the log likelihood is maximum, and AIC and SBC have the lowest values.

ARMA model estimation results are presented in **Appendix 12**. Considering all the above mentioned criteria, I considered that best fit models for the daily returns series are: AR(1) - BET-C, ARMA(2,2) - BUX, ARMA(3,5) - DAX, AR(4)MA(1)MA(3)MA(5) - FTSE 100, ARMA(3,5) - FTSE MIB, ARMA(3,1) - NIKKEI 225, AR(1)AR(2)MA(2)MA(5) - SOFIX, ARMA(1,8) - S&P 500.

The results of the best fit ARMA models for each series analyzed were summarized in the table below.

	BE	Т-С	BU	JX	DA	AX		FTS	E 100	
Variable	С	AR(1)	AR(2)	MA(2)	AR(3)	MA(5)	AR(4)	MA(1)	MA(3)	MA(5)
Coefficient	0.000526	0.093221	-0.821603	0.759593	-0.041036	-0.052012	0.077791	-0.055223	-0.094939	-0.05658
Std. Error	0.000264	0.017522	0.058591	0.066906	0.017585	0.017585	0.017665	0.017566	0.017521	0.017488
t-Statistic	1.99493	5.3201	-14.02265	11.35309	-2.333569	-2.95775	4.40369	-3.143675	-5.418468	-3.235391
Prob.	0.0461	0.0000	0.0000	0.0000	0.0197	0.0031	0.0000	0.0017	0.0000	0.0012
R-squared	0.00	8692	0.01	1914	0.00	4146	0.019691			
Adjusted R-squared	0.00	8385	0.011	1608	0.00	3837		0.01	8778	
S.E. of regression	0.01	498	0.015	5825	0.01	5339		0.01	2182	
Sum squared resid	0.72	4383	0.80	813	0.75	9039		0.4	7833	
Log likelihood	8987	7.145	8807	.231	8905	5.153		964	6.933	
Mean dependent var	0.00	0581	0.000)296	0.00	0192		0.00	00811	
S.D. dependent var	0.01	5043	0.015	5918	0.01	5369		0.01	2298	
Akaike info criterion	-5.56	53557	-5.45	3844	-5.51	6204	-5.976407			
Schwarz criterion	-5.55	59792	-5.45	0078	-5.51	2437	-5.968872			
Durbin-Watson stat	2.00	3313	1.92	891	2.05	2431		1.99	3533	

Table 5. Estimated parameters of ARMA models

	FTSE	MIB	NIKKI	EI 225	S&P	500		SOF	FIX	
Variable	AR(3)	MA(5)	AR(3)	MA(1)	AR(1)	MA(8)	AR(1)	AR(2)	MA(2)	MA(5)
Coefficient	-0.04834	-0.07273	-0.050663	-0.04398	-0.123455	0.040574	0.08823	0.87808	-0.805026	-0.10685
Std. Error	0.017584	0.01757	0.017577	0.017595	0.01747	0.017596	0.012913	0.019701	0.025074	0.015035
t-Statistic	-2.74943	-4.13941	-2.88234	-2.49986	-7.066685	2.305947	6.832638 44.56972 -32.10617		-7.10691	
Prob.	0.006	0.0000	0.004	0.0125	0.0000	0.0212	0.0000	0.0000	0.0000	0.0000
R-squared	0.007	7264	0.004585		0.017298		0.045062			
Adjusted R-squared	0.006	5956	0.004	1277	0.016	994		0.044	4174	
S.E. of regression	0.015	5139	0.015	5158	0.012	664		0.013	3175	
Sum squared resid	0.739	9396	0.741	179	0.517	724		0.559	9829	
Log likelihood	8947	7.47	8943	.583	9529.	589		939	9.9	
Mean dependent var	-0.00	0143	0.000	0837	0.000)15		0.000)514	
S.D. dependent var	0.015	5192	0.01	519	0.012	773		0.013	3476	
Akaike info criterion	-5.542	2423	-5.54	0014	-5.899	9436	-5.819696			
Schwarz criterion	-5.53	8656	-5.53	6248	-5.895	671		-5.81	2165	
Durbin-Watson stat	urbin-Watson stat 2.018552 1.99949 2.007995 1.994088									

Since the probabilities attached to t-statistic test are below the 5% level of relevance for both autoregressive processes AR and moving average MA, the coefficients are considered significant in statistical terms. Instead, with the exception of the AR (1) for BET-C the constant is not significantly different from 0. Which is why I reestimated these models without the constant this time.

If the model is well specified, then the residuals from the estimated model are generated by a white noise process type (sequence of independent random variables, identically distributed) with zero mean and normally distributed. To detect some dependencies in the residue series ACF and PACF functions are examined.

In **Appendix 14** it can be observed that up to lag 15 autocorrelation and partial correlation coefficients are not significantly different from 0, which leads to the conclusion that the residues are not correlated.

The correlogram of squared errors tests the autocorrelation of squared residues of the regression equation by the same principles as the autocorrelation of the errors. If there is autocorrelation of squared errors, this is an indication of the existence of heteroscedasticity. According to the econometric results, for the estimated equations above, in **Appendix 15** it can be observed that there is serial correlation of squared errors, so we may have ARCH terms.

To verify the hypothesis of heteroscedasticity of errors I used the ARCH LM and the White test.

ARCH-LM tests for ARCH effects. The test has the null hypothesis of no ARCH terms. Since the probabilities attached to F-statistic are in all eight cases below the level of significance of 5%, the null hypothesis is rejected and we accept the presence of these effects.

Table 6. ARCH – LM test results

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
E statistic	409.5185	425.4928	114.9481	172.0325	106.49	171.4602	452.5793	127.3903
F-statistic	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Obs*R-	363.6267	376.145	111.0609	163.4191	103.15	162.9055	397.1441	122.6283
squared	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)

White test relates to the equal spreading of the error in relation to all factors, so that calls to a regression analysis of the error in relation to the factors. This test has in the null hypothesis that each coefficient of the regression is significantly different from 0. Since the probability associated with the test is below the level of significance chosen of 5%, the null hypothesis is rejected. Thus, we reject the existence of a constant residual variances, so of the homoscedasticity.

Table 7. White test results

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
	221.5869	93.35216	161.9008	97.07056	1413.315	86.84533	107.6564	88.35302
F-statistic	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Obs*R-	390.0228	257.9994	422.6342	748.1937	748.1937	241.355	809.4476	245.2381
squared	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Scaled	2324.938	1017.242	1429.228	3188.237	3188.237	981.9791	3729.383	1343.214
explained SS	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)

The lack of serial correlation shown by the correlogram of errors is confirmed by the test Serial Correlation LM test. The null hypothesis of the test is that there is no serial correlation of the errors of the regression equation. The probability associated with the test is greater than 0.05 (except BUX and FTSE 100), it is higher than the level of relevance. The null hypothesis is accepted, so we accept the absence of serial correlation.

Table 8. BG test results

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
Estatistic	1.089652	4.06943	2.219754	4.986172	0.287987	0.218754	0.056391	3.454432
F-statistic	(0.2966)	(0.0437)	(0.1364)	(0.0256)	(0.5916)	(0.6400)	(0.8123)	(0.0632)
Obs*R-	1.090297	2.833148	1.611008	4.79288	0.00000	0.099708	0.00000	2.923412
squared	(0.2964)	(0.0923)	(0.2044)	(0.0286)	(1.00000)	(0.7522)	(1.00000)	(0.0873)

To test the normality of errors it is used Jarque-Bera test. The normal distribution of errors is especially important when we want to make predictions based on the econometric equation estimated. Since the probability associated Jarque-Bera test is 0%, we can say that the errors of ARMA models are not normally distributed.

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
Medie	-7.36E-19	0.00031	0.000211	0.0000943	-0.000161	0.0000921	0.000209	0.000162
Mediană	0.0000456	0.000464	0.000769	0.000475	0.000633	0.000403	0.000213	0.000842
Maxim	0.10125	0.119075	0.1058	0.085409	0.106367	0.09478	0.08635	0.108108
Minim	-0.12488	-0.118569	-0.075804	-0.086543	-0.089539	-0.118087	-0.090797	-0.094631
Deviația standard	0.014978	0.015819	0.015335	0.012176	0.015136	0.015155	0.013168	0.012661
Skewness	-0.574155	-0.115486	-0.021898	-0.318741	-0.139341	-0.693595	-0.050305	-0.290047
Kurtotica	12.93684	8.908951	7.774825	9.554318	7.658367	9.164627	10.24436	11.98577
Jarque-Bera	13466.33	4704.79	3066.717	5830.849	2929.147	5370.171	7062.21	10912.1
Probabilitate	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Table 9. Descriptive statistics for ARMA models

We now conduct the BDS test on ARMA residuals. The results are reported in Table 10. Again it is clearly observable that the the null of IID is strongly reject in every case. The rejection of null hypothesis at this stage suggests that some kind of dependence is still left in the data. Since linear structures have already been removed using the best fit autoregressive-moving-average model, the rejection of null hypothesis is indicative of some nonlinear dependencies in the returns series.

Table 10. BDS test results

3	m	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
	2	20.85404	9.05669	10.72699	11.98833	11.62502	4.61095	20.48468	9.84113
0.5	3	26.73114	11.21028	16.43940	17.82753	18.27849	7.55941	27.32732	15.59580
0.5	4	32.44339	12.96338	22.12497	23.45954	25.71516	10.62564	33.83649	20.31128
	5	39.48533	14.87797	27.80116	29.76924	34.38904	14.46141	41.82862	25.05381
	2	21.47715	10.06301	11.47863	13.42828	11.48518	4.76526	22.78616	11.28315
1.0	3	25.78233	12.30262	16.97194	18.67017	17.27493	7.89080	27.29603	16.99293
1.0	4	28.89316	14.33610	21.43380	23.18735	22.40226	10.68752	30.39679	21.01966
	5	32.08189	16.29264	25.07085	27.62683	27.29821	13.32575	33.44802	25.13252
	2	20.85124	11.21513	12.99526	14.07523	10.99497	6.67766	23.04555	13.31352
1.5	3	24.05517	13.07780	18.68524	18.78007	15.78002	9.84248	26.64263	18.31499
1.5	4	26.23713	15.19643	22.43234	22.24422	19.50648	12.32883	28.19900	21.70267
	5	27.82834	16.98912	25.12748	25.13560	22.66971	14.32270	29.57038	24.69741
	2	20.07422	11.78482	12.94515	14.34879	10.52895	9.32508	22.26887	14.63865
2.0	3	22.67976	13.40236	18.30898	19.00731	14.69481	12.62530	25.24498	19.07058
2.0	4	24.20914	15.67073	21.67818	22.01718	17.77636	14.88138	26.16900	21.78561
	5	25.01601	17.17728	24.11509	24.21664	20.24158	16.50055	26.72446	23.74991

After the confirmation that some type of nonlinearity is present in the data, we next move to investigate the nature of this nonlinearity, i.e. stochastic or deterministic, by using the BDS test of independence. We conduct the BDS test on the data after removing the nonlinear dependence caused by heteroskedasticity. We use different ARCH type models for daily returns series.

In this step we will try to trace the equation that best describes the volatility of daily returns series. Before estimating a GARCH model we have selected the best ARMA models for the return series analyzed and shown that they have significant statistic coefficients. According to the Jarque-Bera test the error distribution is not normal. White test for heteroscedasticity confirmed the presence of ARCH effects. And with ACF and PACF functions we analyzed the autocorrelation and we concluded that residues are not correlated, but instead we have significant serial correlation of squared errors. Therefore a GARCH type model may be considered an appropriate change to the initial model.

For the choice of orders p and q, and the type of ARCH model (GARCH / TGARCH, GARCH-M, EGARCH, PARCH) were made successive attempts to find the desired equation and were analyzed all possible combinations seeking to maximize criterion Log likelihood, and AIC and SBC criteria minimization.

I also compared the results obtained for the three possible distributions: normal distribution, Student-t and GED ("Generalized Error Distribution").

After this comparison between GARCH models for volatility modeling, we decided to fit the data with the following models: BET-C – GARCH(1,1), BUX – EGARCH(1,1,1), DAX – GARCH(1,1), FTSE 100 – GARCH(2,1), FTSE MIB – GARCH(1,1), NIKKEI – GARCH(1,1), SOFIX – EGARCH(1,1,1), S&P 500– EGARCH(2,1,1).

The results of the best fit GARCH models for each series analyzed were summarized in table 11 below.

Square error and conditional variance coefficients of the variance equation are statistically significant (significance level of 1% and 5%).

BET-	С	BUX	<u> </u>	DAY	K	FTSE 100		
AR(1) - GAR	CH(1,1) S	ARMA(EGARCH(ARMA(3,5) - GA	ARCH(1,1) N	AR(4)MA(1)MA(3)MA(5)- GARCH(2,1) N		
Variable	Coefficient	Variable	Coefficient	Variable	Coefficient	Variable	Coefficient	
С	0.000672 (0.0000)	AR(2)	-0.718548 (0.0000)	AR(3)	-0.030194 (0.0916)	AR(4)	0.019962 (0.2791)	
AR(1)	0.08477 (0.0000)	MA(2)	0.699326 (0.0000)	MA(5)	-0.034794 (0.0549)	MA(1)	-0.062726 (0.0004)	
-	-	-	-	-	-	MA(3)	-0.036008 (0.0492)	
-	-	-	-	-	-	MA(5)	-0.015422 (0.3882)	
Variance E	quation	Variance E	quation	Variance E	quation	Variance E	quation	
Variable	Coefficient	Variable	Coefficient	Variable	Coefficient	Variable	Coefficient	
С	5.11E-06	С	-0.306997	С	2.02E-06	С	1.50E-06	
	(0.0000)		(0.0000)		(0.0000)		(0.0000)	
ARCH(1)	0.197431	ARCH(1)	0.163172	ARCH(1)	0.080019	ARCH(1)	0.059448	
(-)	(0.0000)	(-)	(0.0000)	(-/	(0.0000)	(-)	(0.0000)	
GARCH(1)	0.801247	Asymmetric coefficient	-0.046085	GARCH(1)	0.910248	ARCH(2)	0.049735	
	(0.0000)		(0.0000)		(0.0000)		(0.0040)	
-		GARCH(1)	0.978582	-		GARCH(1)	0.880604	
			(0.0000)				(0.0000)	
R-squared	0.008533	R-squared	0.005701	R-squared	0.003741	R-squared	0.01192	
Adjusted R- squared	0.008225	Adjusted R- squared	0.005393	Adjusted R- squared	0.003433	Adjusted R- squared	0.011001	
S.E. of regression	0.014981	S.E. of regression	0.015875	S.E. of regression	0.015342	S.E. of regression	0.012231	
Sum squared resid	0.724499	Sum squared resid	0.813212	Sum squared resid	0.759347	Sum squared resid	0.482121	
Log likelihood	9880.67	Log likelihood	9269.64	Log likelihood	9569.992	Log likelihood	10398.46	
Mean dependent var	0.000581	Mean dependent var	0.000296	Mean dependent var	0.000192	Mean dependent var	8.11E-05	
S.D. dependent var	0.015043	S.D. dependent var	0.015918	S.D. dependent var	0.015369	S.D. dependent var	0.012298	
Akaike info criterion	-6.114347	Akaike info criterion	-5.737157	Akaike info criterion	-5.926265	Akaike info criterion	-6.439699	
Schwarz criterion	-6.103052	Schwarz criterion	-5.723976	Schwarz criterion	-5.916848	Schwarz criterion	-6.424628	
Durbin- Watson stat	1.985939	Durbin- Watson stat	1.931968	Durbin- Watson stat	2.052525	Durbin- Watson stat	1.98296	

Table 11. Estimated parameters of GARCH models

FTSE	MIB	NIKKE	I 225	S&P 5	500	SOFI	X
ARMA(3,5)-G	ARCH(1,1) N	ARMA(3,1)-GA	ARCH(1,1) N	ARMA(EGARCH(AR(1)AR(2)MA EGARCH(
Variable	Coefficient	Variable	Coefficient	Variable	Coefficient	Variable	Coefficient
C	-0.026186	4.D.(2)	0.00917	AD(1)	-0.076468	AD(1)	0.060901
C	(0.1430)	AR(3)	(0.5906)	AR(1)	(0.0000)	AR(1)	(0.0000)
	-0.029998		-0.035908		0.009361		0.840472
AR(1)	(0.0886)	MA(1)	(0.0781)	MA(8)	(0.5731)	AR(2)	(0.0000)
	-		-		-		-0.810569
		-		-		MA(2)	(0.0000)
	-		-		-		-0.024328
		-		-		MA(5)	(0.0417)
Variance	Equation	Variance E	anation	Variance E	quation	Variance E	quation
Variable	Coefficient	Variable	Coefficient	Variable	Coefficient	Variable	Coefficient
С	9.82E-07	С	3.41E-06	С	-2.94E-01	С	-0.943369
	(0.0000)		(0.0000)		(0.0000)		(0.0000)
ARCH(1)	0.074271	ARCH(1)	0.09109	ARCH(1)	-0.125145	ARCH(1)	0.464986
	(0.0000)		(0.0000)		(0.0052)		(0.0000)
GARCH(1)	0.923379	GARCH(1)	0.895046	ARCH(2)	0.252789	Asymmetric coefficient	-0.044994
	(0.0000)		(0.0000)		(0.0000)		(0.0308)
-		-		Asymmetric coefficient	-0.139159	GARCH(1)	0.933315
					(0.0000)		(0.0000)
-		-		GARCH(1)	0.978603	-	
					(0.0000)		
R-squared	0.005046	R-squared	0.000923	R-squared	0.013929	R-squared	0.029677
Adjusted R-		Adjusted R-		Adjusted R-		Adjusted R-	
squared	0.004737	squared	0.000613	squared	0.013623	squared	0.028774
S.E. of regression	0.015156	S.E. of regression	0.015185	S.E. of regression	0.012686	S.E. of regression	0.013281
Sum squared	0.015150	Sum squared	0.015105	Sum squared	0.012000	Sum squared	0.015201
resid	0.741048	resid	0.743907	resid	0.519499	resid	0.568849
Log likelihood	9598.664	Log likelihood	9361.708	Log likelihood	10497.75	Log likelihood	10378.38
Mean	0.0001.42	Mean	0.055.05	Mean	0.0001.5	Mean	0.000514
dependent var S.D.	-0.000143	dependent var S.D.	8.37E-05	dependent var S.D.	0.00015	dependent var S.D.	0.000514
S.D. dependent var	0.015192	S.D. dependent var	0.01519	S.D. dependent var	0.012773	S.D. dependent var	0.013476
Akaike info		Akaike info		Akaike info		Akaike info	
criterion	-5.94403	criterion	-5.797217	criterion	-6.495199	criterion	-6.422657
Schwarz	5 024612	Schwarz	5 7070	Schwarz	-6.48014	Schwarz	-6.405711
criterion Durbin-	-5.934613	criterion Durbin-	-5.7878	criterion Durbin-	-0.48014	criterion Durbin-	-0.403/11
Watson stat	2.023722	Watson stat	2.01805	Watson stat	2.102132	Watson stat	1.95012

In EGARCH models for BUX, S&P 500 and SOFIX the asymmetric coefficient seems to be statistically significant because the probabilities attached are less than 5%. To confirm this, we applied the Wald test. This test has the null hypothesis that these coefficients are not significantly different from zero.

 Table 12. The Wald test results

	t-statistic	F-statistic	Chi-square
BUX	-4.73663	22.43568	22.43568
	(0.0000)	(0.0000)	(0.0000)
S&P 500	-12.0982	146.3661	146.3661
	(0.0000)	(0.0000)	(0.0000)
SOFIX	-2.16009	4.665999	4.665999
	(0.0308)	(0.0308)	(0.0308)

Since in all three cases the probabilities attached are less than the critical value of 0.05, the null hypothesis of the test is rejected, which means that in these cases the impact of the information will be asymmetrical.

As expected, when estimating a GARCH model for financial data series, the sum of coefficients is very close to 1. The constant term is very small, and the conditional variance coefficient is greater than 0.8 in all cases, this means that shocks in the conditional variance are persistent and significant changes in the conditional variance are followed by other large changes, and small changes by other small changes.

Having established suitable models for the return series considered, now they must be assessed by a number of statistical tests and graphs. If the models are correctly specified, then the standardized residues must not longer poses serial correlation, heteroscedasticity or any other type of non-linear dependence.

Therefore, for the beginning we estimate the ACF and PACF functions of the squared standardized residuals of the models and use Q-statistics (Ljung-Box) test to investigate the existence of serial correlation up to lag 15.

According to correlogram of squared errors (shown in **Appendix 22**), there is no additional ARCH terms. Since the coefficients of autocorrelation and partial correlation functions are very close to the value 0 it can be stated that residues are not correlated.

Also, the probability of more than 5% of the Q-statistic test, corresponding to the null hypothesis that there is no autocorrelation in residues up to lag 15, confirms the absence of autocorrelation for the squared errors.

Further, the existence of other possible ARCH effects remaining in the residue is tested using ARCH-LM test. If the variance equation proposed by our model is correctly specified, then we should not have more ARCH effects.

LM test investigates the null hypothesis of absence of ARCH effects and it is necessary to have an estimated value that is not statistically significant to not have the power to reject H0.

Table 13. The ARCH – LM test results

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
F-statistic	3.241016	0.589139	2.972783	0.497674	2.118539	1.026956	0.062340	0.080758
	(0.0719)	(0.4428)	(0.0848)	(0.4806)	(0.1456)	(0.3110)	(0.8029)	(0.7763)
Obs*R- squared	3.239771	0.589397	2.971887	0.497906	2.118461	1.027265	0.062378	0.080806
	(0.0719)	(0.4428)	(0.0847)	(0.4804)	(0.1455)	(0.3108)	(0.8028)	(0.7762)

ARCH LM test shows that we can accept the null hypothesis of absence of ARCH effects as attached test probabilities are greater than 0.05, the results not having statistical significance.

Jarque-Bera test also confirms that the residues are still not normally distributed. (Prob = 0%)

_	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
Medie	0.000933	0.029533	0.024918	0.011698	-0.006387	0.006999	0.038238	0.018818
Mediană	-0.011723	0.032606	0.063245	0.037652	0.044786	0.023157	0.027858	0.091280
Maxim	7.949975	4.112991	3.395123	4.434716	4.680145	3.267584	6.566573	3.625933
Minim	-6.844023	-5.369757	-6.817613	-4.407328	-5.169177	-5.404181	-5.900159	-6.482276
Deviația standard	0.992793	1.000605	1.000360	1.000246	1.000198	1.000147	1.006995	1.000690
Skewness	0.128544	-0.064769	-0.353129	-0.309079	-0.378137	-0.383344	0.192677	-0.450817
Kurtotica	7.142378	4.010356	4.251021	3.708267	4.230684	4.024651	6.642557	4.210318
Jarque-Bera	2318.25	139.6003	277.5886	118.8290	280.6386	220.2734	1805.108	306.5558
Probabilitate	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Table 14. Descriptive statistics for GARCH models

We now apply the BDS test of independence to standardized residuals of GARCH and EGARCH models. In doing so, we use the BDS test to test the null hypothesis of independent random variables against the alternative hypothesis of non-independent random variables. The results are presented in Table 15.

The results suggest that the ARCH-type models have removed considerable serial dependence from the raw and filtered data and also the values of BDS statistic are noticeably reduced at all dimensions. It is also observable that the null hypothesis is not rejected in six cases, i.e. BUX, DAX, FTSE 100, FTSE MIB, NIKKEI 225 and S&P 500.

The non-rejection of the null hypothesis at this stage of the analysis indicates that conditional heteroskedasticity is the main cause for the initial rejection of the null and the nature of dependence in the data is best described as a nonlinear stochastic system. It appears, therefore, that the behaviour of these return series is adequately explained by ARCH-type models. However, the null hypothesis is again rejected for BET-C and SOFIX. In these cases, the significant BDS statistics for the standardized residuals suggest that the returns series are non-IID and the ARCH type models are not sufficient to capture all the information present in the data. The rejection of the null hypothesis, at this stage, is consistent with deterministic chaos as there remains some further dependence in the data that cannot be explained with reference to GARCH and EGARCH models.

3	m	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
	2	4.825549	-0.081942*	-1.653390*	-0.881034*	-1.682837*	-2.423919	3.913801	-1.033641*
0.5	3	5.305013	-0.377128*	-0.024019*	0.338339*	-1.001259*	-1.717043*	4.460895	-0.425269*
0.5	4	5.492119	-0.378757*	1.452941*	1.055317*	0.023915*	-0.641525*	4.013648	-0.352227*
	5	5.172980	0.000480*	2.482784	1.668677*	0.570817*	0.234327*	3.452289	-0.266141*
	2	3.985862	-0.694551*	-2.645580	-0.650178*	-1.990842	-3.992148	3.175269	-0.975392*
1.0	3	3.690628	-1.081481*	-1.296131*	0.146274*	-1.241394*	-3.532882	3.509793	-0.858417*
1.0	4	3.367446	-1.057247*	-0.017167*	0.718921*	-0.184242*	-2.591520	3.280873	-0.852200*
	5	2.705422	-0.813497*	0.790931*	1.165214*	0.442030*	-1.823461*	2.660342	-0.773877*
	2	3.584677	-0.542837*	-2.968780	-0.295083*	-2.372692	-4.056215	2.300337	-0.577788*
1.5	3	3.188778	-0.86931*	-1.969512	0.099768*	-1.953353*	-3.464264	2.610313	-0.547093*
1.5	4	2.845470	-0.708258*	-0.883220*	0.393346*	-0.956526*	-2.786503	2.561622	-0.670607*
	5	2.221953	-0.459095*	-0.267057*	0.708122*	-0.372994*	-2.218547	2.157721	-0.676532*
	2	3.212322	-0.056239*	-2.641131	0.531851*	-2.178616	-3.290453	1.364244*	-0.275873*
2.0	3	2.806847	-0.180037*	-1.630612*	0.539393*	-1.953942*	-2.700124	1.510578*	-0.282918*
2.0	4	2.498565	0.144142*	-0.681718*	0.588599*	-1.092264*	-2.147277	1.644802*	-0.558696*
	5	1.958490*	0.394994*	-0.193644*	0.794627*	-0.529896*	-1.749933*	1.394414*	-0.662614*

Table 15. The BDS test results

(*) Indicates BDS statistics that are not significant at 5% critical level

4.2.2. The Rescaled Range analysis results

Now in order to ascertain whether the data series of returns are, indeed, a result of chaotic process, we further conduct a highly popular test, namely R/S analysis.

The R/S analysis is a more powerful indicator of the persistence of a time series where the influence of a set of past observations on a set of future observation is effectively captured. As a matter of fact, presence of some dependence between observations widely separated in time (i.e. long-memory) suggests that realizations from the remote past can help predict future returns. Therefore, it is possible to make consistent speculative profits. A precise summary of the estimated Hurst exponent for the raw residuals are presented in Table 16.

It is noteworthy that when an estimated value of H is different from 0.5, the observations are no longer independent and they carry some memory of all preceding events which can be described as 'long-term memory' process. Although marginally, but the value of H for all return series are significantly different from 0.5. This indicates for the presence of marginal persistence and temporal dependence in the data, and therefore, provide further confirmation to the rejection of random walk hypothesis.

Table 16. Hurst exponent

BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
0.7201	0.6080	0.6141	0.5240	0.6161	0.5332	0.7626	0.5907

In summary, the R/S analysis reveals the presence of a weak nonlinear temporal dependency (persistence) for developed markets such as FTSE 100 and NIKKEI and stronger persistence for emerging markets, i.e. SOFIX, BET-C.

An important implication of this is that if asset returns do not follow random walk, the process of annualizing risk by square root of time will lead to either overestimation or underestimation of the actual level of risk associated with an investment. Moreover, while considering the capital asset pricing model and Black–Scholes models, the misestimation of risk will result in highly incorrect valuations.

4.2.3. The Rcurrence Analysis results

The eight series data of indices were analysed with Visual Recurrence Analysis. The data were implemented and analysed without prewhitening.

The Recurrence Plots are shown below. There were built using a delay-time equal to 1 and embedding dimension determined by the method of false nearest neighbours.

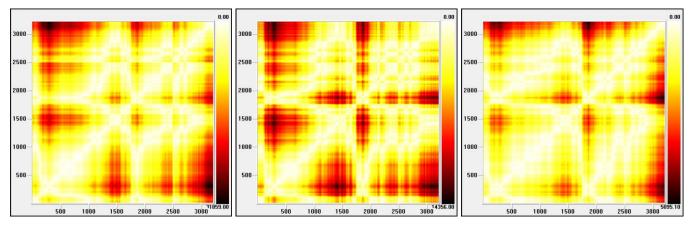
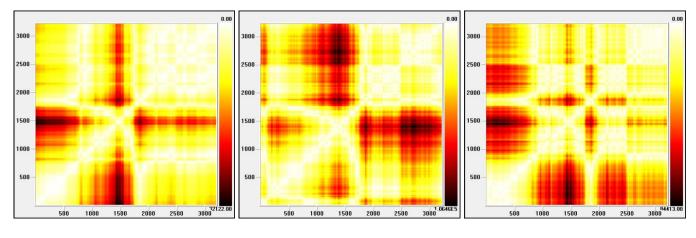
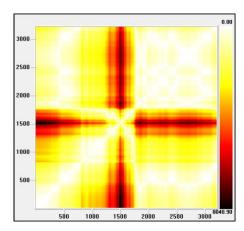


Figure 6. RP – FTSE 100

Figures 5, 6 and 7 represent distance plots for the three largest Western financial markets: Germany, the United Kingdom and the United States. These plots exhibit many common features, possibly reflecting the high level of integration of these markets. Light shaded regions are always found in the vicinity of the main diagonal line. The light shading fades as the distance to the LoI increases, reflecting the non-stationarity of the series. However, interesting light shaded structures can be found far from the LoI. A "butterfly" shaped structure can be observed in the three plots.

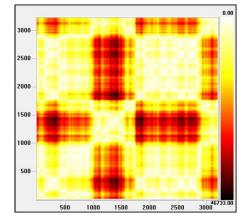
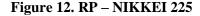

Figure 8. RP – BET-C

Figure 9. RP – FTSE MIB


Figure 10. RP – BUX

Figures 8, 9 and 10 presents distance plots for: Romania, Italy and Hungary. These neighboring economies also share many common features. However, the patterns are structurally different from those exhibited by the western markets. These examples suggest that stock markets in countries with strong economic interdependence tend to display similar features in recurrence plots. The plots for BET-C, FTSE MIB and BUX also more structured than those in Figures 5,6,7. Instead of a "butterfly" shaped structure, these plots display an "arrow" shaped structure.

In Figures 11 and 12 are presented the recurrence plots for Bulgaria and Japan. From these RPs we can see clearly the difference between an emerging and a developed country in terms of recurrence point. The plot for SOFIX is definitely more structured than the one for NIKKEI indicating the deterministic nature of this series in contrast with the other one.

While the visual inspection of recurrence or distance plots provides interesting insights, their interpretation if often difficult and subjective. Recurrence quantification analysis introduces numerical measures that allow for the quantification of the structure and complexity of RPs.

The RQA results are displayed in table 17. Since the system is unknown, optimal time delay was estimated as the one where average mutual information reaches its first minimum. For a rough selection of the embedding dimension for our one-dimensional time series, the false nearest neighbour method was used.

REC: It is positive meaning that the data are correlated. The highest values for percent recurrence are obtained for SOFIX, FTSE MIB, BUX and BET-C and the lowest for more developed conutries, i.e. the western markets S&P 500, FTSE 100, DAX and NIKKEI 225.

DET: It is also positive (except for NIKKEI 225 and S&P 500) indicating that recurrent points are consecutive in time, that is, form segments parallel to the main diagonal. DET values indicate deterministic nature of the embedded series.

 Table 17. RQA results

	BET-C	BUX	DAX	FTSE 100	FTSE MIB	NIKKEI 225	SOFIX	S&P 500
Mean	3108.297	17530.949	5246.146	5171.527	26219.318	11759.728	660.458	1157.442
Standard deviation	1788.443	6000.125	1400.887	797.902	8275.176	2860.041	432.708	200.121
Mean rescaled dist	53.567	36.323	43.390	49.421	35.049	52.293	52.699	55.588
Percent recurrence	0.090	0.159	0.036	0.007	0.195	0.009	0.372	0.001
Percent determinism	0.36174	0.55257	0.41858	0.04310	0.39701	0.000	0.72921	0.000
Percent laminarity	0.000	26.974	0.000	0.000	3.032	0.000	50.340	0.000
Trapping Time	-1.000	13.259	-1.000	-1.000	10.769	-1.000	12.674	-1.000
Ratio	400.878	347.301	1158.080	620.988	203.468	0.000	195.807	0.000
Entropy (bits)	3.038	4.261	2.502	0.000	3.923	-1.000	4.643	-1.000
Maxline	25	562	45	10	600	-1	762	-1
Trend	-0.153	-0.198	-0.056	-0.010	-0.234	-0.013	-0.566	-0.002

LAM: The LAM values indicate intermittency or laminarity in the process. In dynamical systems intermittency is the alternation of phases of apparently periodic and chaotic dynamics. The LAM values are high for SOFIX and BUX indicating extent of intermittency. The periodicity is less than as depicted from REC values. So, it means it is most of the time in chaotic phase than in periodic phase.

TT: The TT values are positive only for SOFIX, BUX and FTSE MIB. TT values indicate the average time the system is trapped in specific state.

Ratio: Ratio is the indicator of transition between non chaotic to chaotic states. High ratio indicates presence of transition to chaotic state, and low ratio represents quasi steady state. It is zero only for NIKKEI 225 and S&P 500, thus indicating the non deterministic nature of these series.

Entropy: It is an indicator of the amount of information required to identify the system. The values of -1 indicates the series are non chaotic or periodic.

Maxline: Indicates length of the segment in terms of recurrent points of the longer segment and also the periodicity of the process. High values of Maxline indicate process is periodic and low values indicate the process is chaotic. Maxline value is very high for SOFIX, BUX and FTSE MIB due to positive Trapping Time and Percent laminarity showing periodicity.

Trend: Trend indicates the drift or stationarity of the signal. A high value of trend indicates drift in the signal and low value of trend indicates stationarity.

The analysis led with VRA induces us to refuse the hypothesis of IID and to emphasize the presence of structure. The data are non-linear deterministic in six out of eight cases and this nonlinearity can be interpreted as chaos. The most evident results are obtained for the emerging countries.

Predicting with VRA

Even if we are not interested in time series forecasting as a subject matter, we can think of it as the ultimate test of your analysis of a particular dynamical system and the time series generated by that system. If our embedding parameters are optimal, than the corresponding predictive model should minimizes the prediction error.

VRA provides an important module on non-parametric forecasting, using local models by fitting a low order polynomial which maps k nearest neighbours of onto their next values, to use this map to predict future values. After prediction, a plot shows the actual and predicted values, jointly with the normalized prediction error and the magnitudes of RMSE (root of the mean squared error) and normalized error (mean squared error normalized by the mean squared error of the trivial predictor: the unconditional mean in multi-step forecasting, or the random walk predictor in the one-step ahead predictor). In **Appendix 14** are presented in sample predictions for all series analyzed.

From Figures 13 and 14 once again we can notice the difference between an emerging and a developed country in terms of in sample prediction. The RMSE is very low for SOFIX (i.e. 5.24), while for NIKKEI 225 is 514.40, a very high value. This suggests that in a country with well developed financial market it is not easy to make predictions. Intertemporal smoothing operations, such as arbitrage, tend to squash cycles and chaos in economic systems with rich enough variety of market instruments. However, given the very different institutional features of financial markets in developing countries, it is important to explore the possibilities of such markets exhibiting chaotic behavior. Financial markets in developing countries are less mature as compared to those in developed countries, and the implications of complex nonlinear behavior could be significant for traders, institutional investors for devising suitable trading strategies.

Common fallacies about markets claim financial markets are unpredictable. However, chaos theory together with powerful algorithms proves such statements are wrong. Markets are chaotic systems with complex dynamics, yet to a certain extent we can make valid stock market forecasts. Using these forecasts together with a careful risk management strategy may give a trader a significant competitive advantage.

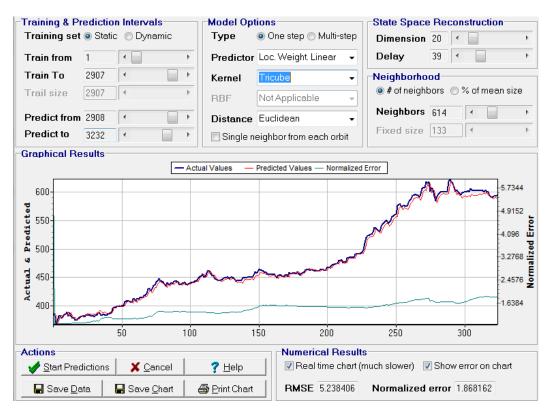


Figure 13. In sample prediction for SOFIX

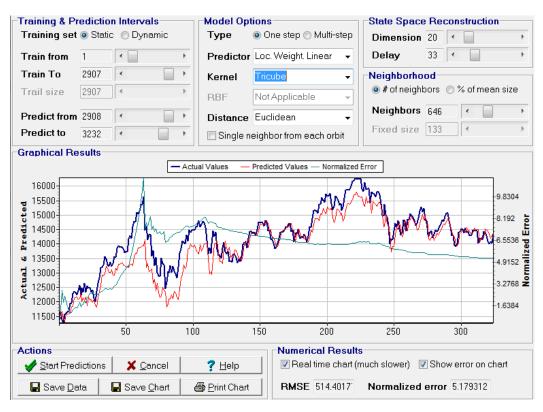


Figure 14. In sample prediction for NIKKEI 225

CONCLUSIONS

This study has examined the time series behaviour of close price based daily returns of equity indices for different markets by using recently developed tests of independence, nonlinearity and chaos.

Sometimes the conclusions both for and against chaos are reached by applying only one type of chaos test. To produce convincing results, we have to employ all tests for chaos to exploit their different potentials and limits. Few published papers have jointly applied the BDS test, R/S analysis, and topological tests.

Until recently, financial market researchers were ill equipped to detect the presence of chaos. The most commonly used nonlinear testing procedure was the BDS test, which is poorly suited for application to the small, noisy data sets common in finance. The introduction of recurrence plots and RQA for chaotic behaviour, however, has provided researchers with an exciting new tool for detecting chaos in financial data.

There are few existing studies of complex nonlinear dynamics which utilize this methodology, and so the application in this paper serves to illustrate the potential of this tool in the study of financial data, but more important to support the conclusion that the data analysed could be chaotic

In short, consistent with the findings of many previous studies results of this study reveal that there is a strong evidence of nonlinear dependence in daily increments of all equity indices analyzed. However, the nature of this nonlinear dependence appears to be deterministic only in five out of six cases.

More precisely, the results of variance ratio test suggest that the null hypothesis of random walk is strongly rejected for all the return series. It appears that daily increment in stock returns are highly autocorrelated. Further, the results based on Rescaled Range analysis also reveal that there is evidence of persistence or temporal dependencies in daily increments of market returns. The BDS test of independence produced mixed results when conducted on standardized residuals from GARCH and EGARCH models. In six out of eight cases the null of IID was not rejected. Non-rejection of the null hypothesis of IID observations suggests that low order GARCH or EGARCH type models are adequate to capture all potential nonlinear dependence in the data.

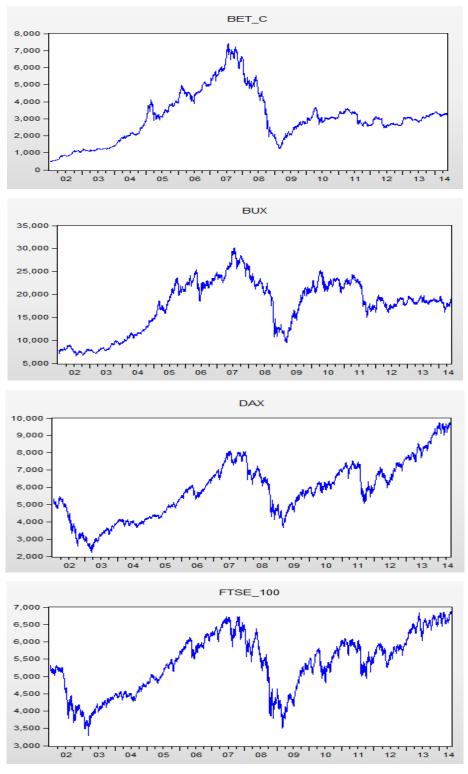
The findings of this study have some interesting implications. First, the existence of chaos in market indices could be exploitable and helpful for market players in the emerging countries such as Romania and Bulgaria. In other words, the presence of chaotic structure in return series implies that profitable nonlinearity based trading rules may exist at least in the short-run.

Second, presence of nonlinearity in the data suggests that asset pricing models and forecasting models should account for the existing nonlinearities in the data, otherwise their results may be biased and highly misleading. Finally, the presence of temporal dependence in market returns, as confirmed by the estimates of Hurst exponent, suggests that the process of annualizing risk by square root of time may lead to either overestimation or underestimation of the actual level of risk associated with an investment.

The VRA analysis, which can be applied and gives reliable results also with short data sets, shows presence of chaotic behaviour in five out of eight cases.

There are important reasons to understand the impact of nonlinearities and chaos in financial markets. Even if the future is unknowable, nonetheless Chaos Theory allows for the possibility of a range of future states represented by attractor on which orbits chaotic trajectories evolve. In the long run, a chaotic system moves into, and remains in it, though in principle determinate, resembles a random walk, repeatedly visiting each point in the attractor. The global behaviour of chaotic systems is bounded on the attractor: is not explosive. While economic fluctuations are unpredictable they will always lie within certain bounds. Thus, if we are able to know in which space the attractor lies, by determining the phase space using the embedding dimension for instance, and if we are able to re-build the orbits, then we can make predictions.

Although we cannot forecast the precise state of a chaotic system in the longer term, chaotic systems trace repetitive patterns which often provide useful information because they are the same at different scale of time. What is observed at a more global level is reproduced at a smaller scale because the chaotic attractor is a fractal. So, having knowledge of such patterns would make it possible to, on the average, make better predictions in short term.


REFERENCES

- Barkoulas, J. T. (2008), "Testing for Deterministic Monetary Chaos: Metric and Topological Diagnostics", Chaos, Solitons and Fractals, 38, 1013–1024;
- Bastos, A. J. and J. Caiado (2010), "Recurrence Quantification Analysis of Global Stock Markets";
- Bhattacharya, A. and R. Sensarma (2006), "Do Financial Markets Exhibit Chaotic Behaviour? Evidence from an Emerging Economy";
- Crowley, P. and A. Schultz (2010), "A New Approach to Analyzing Convergence and Synchronicity in Growth and Business Cycles: Cross Recurrence Plots and Quantification Analysis";
- Dechert, D. W. and C. H. Hommes (2000), "Complex Nonlinear Dynamics and Computational Methods", Journal of Economic Dynamics and Control, 24, 651-662;
- 6. Diebolt, C. and C. Kyrtsou (2005), "New Trends in Macroeconomics";
- Eckmann, J. P., S. O. Kamphorst, and D. Ruelle (1987), "Recurrence Plots of Dynamical Systems", Europhys. Lett., 4 (9), 973-977;
- Faggini, M. (2013), "Chaos Detection in Economic Time Series: Metric versus Topological Tools";
- 9. Faggini, M. and A. Parziale (2011), "The Failure of Economic Theory. Lessons from Chaos Theory";
- 10. Farmer, D. J. (1981), "Chaotic Attractors of an Infinite-Dimensional Dynamical System";
- 11. Guégan, D. (2009), "Chaos in Economics and Finance";
- Karytinos, A. D. (1999), "A Chaos Theory and Nonlinear Dynamics Approach to the Analysis of Financial Series: A Comparative Study of Athens and London Stock Markets", A Dissertation Presented for the Doctor of Philosophy Degree;

- 13. Kemp, E. S. (2006), "Gamma Test Analysis Tools for Non-linear Time Series";
- Kennel, M. B., R. Brown, and H. D. I. Abarbanel, (1992), "Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction", Physical Review A, Vol. 45, No. 6;
- LeBaron, B. (1994), "Chaos and Nonlinear Forecastability in Economics and Finance", University of Wisconsin – Madison;
- Marwan, N. and J. Kurths (2005), "Line Structures In Recurrence Plots", Physics Letters A, 336, 349–357;
- Marwan, N., M. C. Romano, M. Thiel, and J. Kurths (2007), "Recurrence Plots for the Analysis of Complex Systems", Physics Reports, 438, 237 – 329;
- McKenzie, D. M. (2001), "Chaotic Behavior in National Stock Market Indices: New Evidence from the Close Returns Test", Global Finance Journal, 12, 35-53;
- Mhalsekar, S. D., S. S. Rao, and K.V. Gangadharan (2010), "Investigation on Feasibility of Recurrence Quantification Analysis for Detecting Flank Wear in face Milling", International Journal of Engineering, Science and Technology, Vol. 2, No. 5, 23-38;
- Mirowski, P., "From Mandelbrot to Chaos in Economic Theory", 289-307, University of Notre Dame, Notre Dame, Indiana;
- Mishra, R. K., S. Sehgal, and N. R. Bhanumurthy (2011), "A Search for Long-Range Dependence and Chaotic Structure in Indian Stock Market", Review of Financial Economics, 20, 96-104;
- 22. Moloney, K. and S. Raghavendra, "Transition Dynamics of Dow Jones Index Using Recurrence Quantification Analysis : From Bull to Bear";
- 23. Özer, G. and C. Ertokatli (2010), "Chaotic Processes of Common Stock Index Returns: An Empirical Examination on Istanbul Stock Exchange (ISE) Market";
- 24. Peters, E. E. (1991), "Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility";

- 25. Pincus, M. S. (1990), "Approximate Entropy as a Measure of System Complexity";
- Schultz, A. P., Y. Zou, N. Marwan, and M. T. Turvey (2011), "Local Minima-Based Recurrence Plots for Continuous Dynamical Systems", International Journal of Bifurcation and Chaos, Vol. 21, No. 4, 1065-1075;
- 27. Yamaguchi, K. (2014), "Money and Macroeconomic Dynamics: Accounting System Dynamics Approach";
- 28. Zbilut, J. P., A. Giuliani, and C. L. Webber (2008), "Recurrence Quantification Analysis and Principal Components in the Detection of Short Complex Signals";
- Zbilut, J. P., A. Giuliani, and C. L. Webber Jr. (2000), "Recurrence Quantification Analysis as an Empirical Test to Distinguish Relatively Short Deterministic versus Random Number Series", Physics Letters A, 267, 174–178;
- Zbilut, J. P., N. Thomasson, and C. L.Webber (2002), "Recurrence Quantification Analysis as a Tool for Nonlinear Exploration of Nonstationary Cardiac Signals", Medical Engineering and Physics, 24, 53–60.

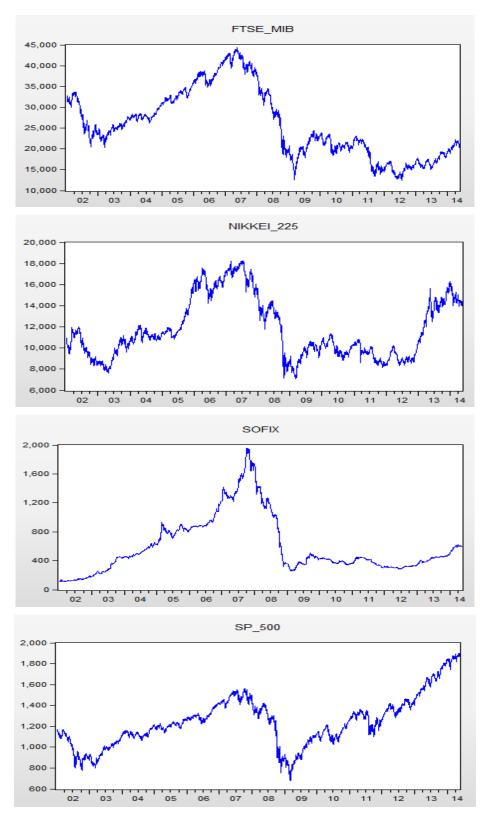
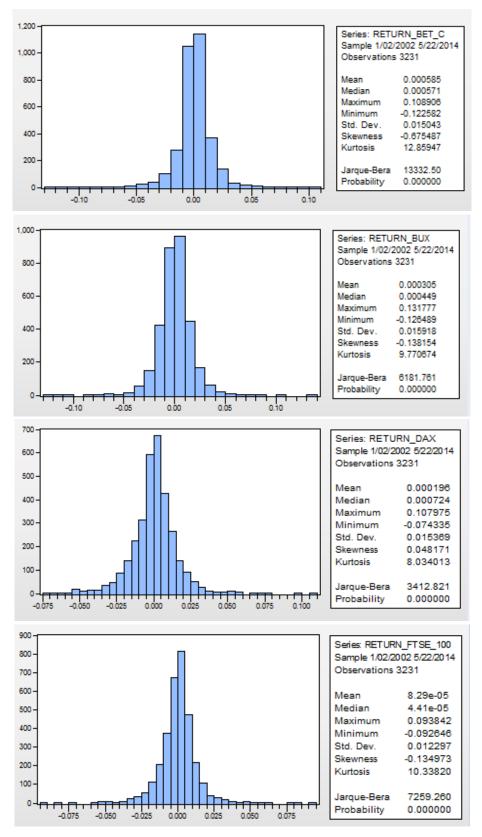



Figure 1. Daily close price evolution

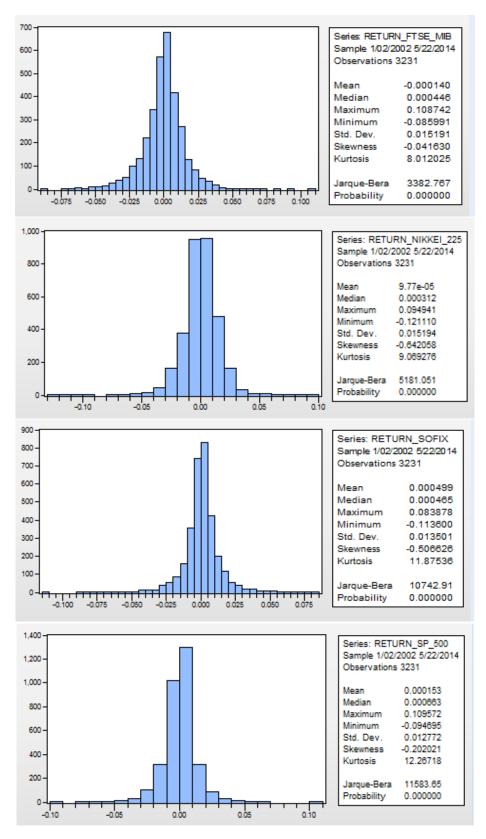
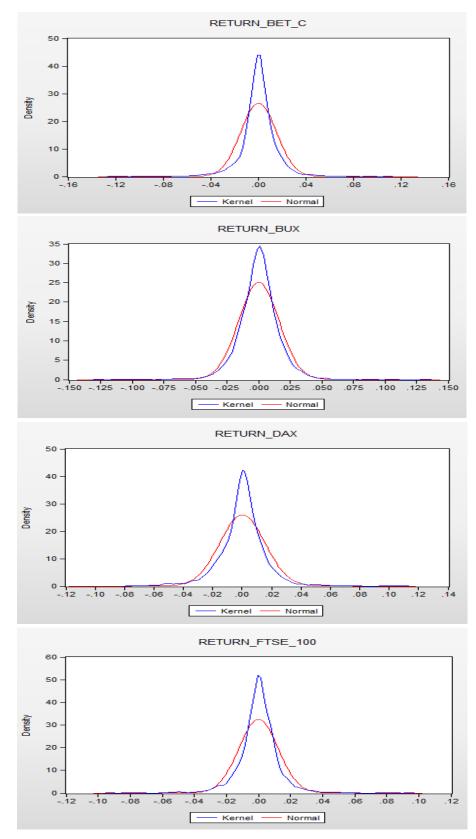
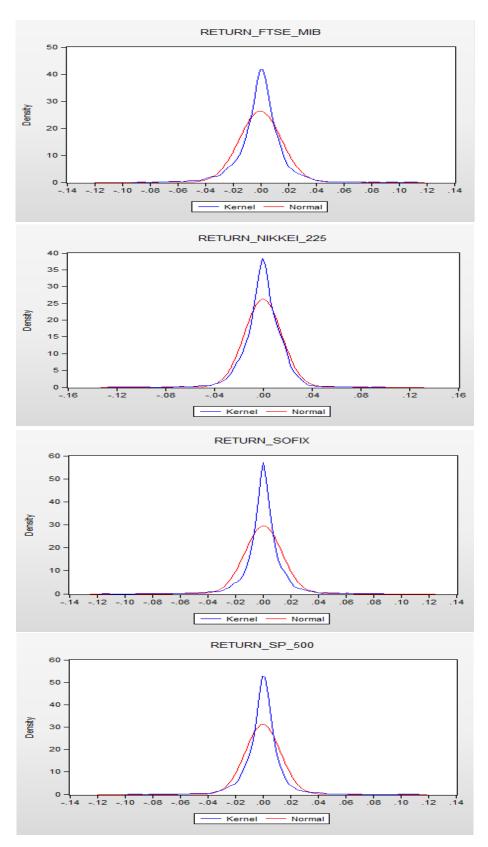




Figure 2. Histogram of daily returns

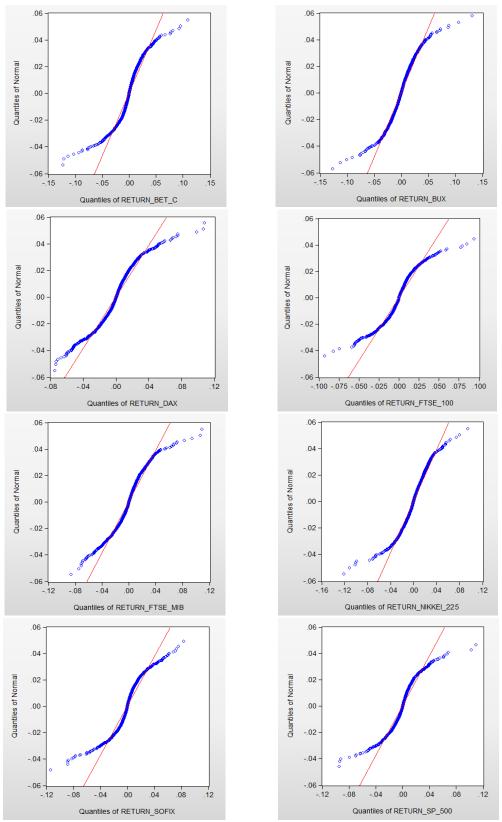
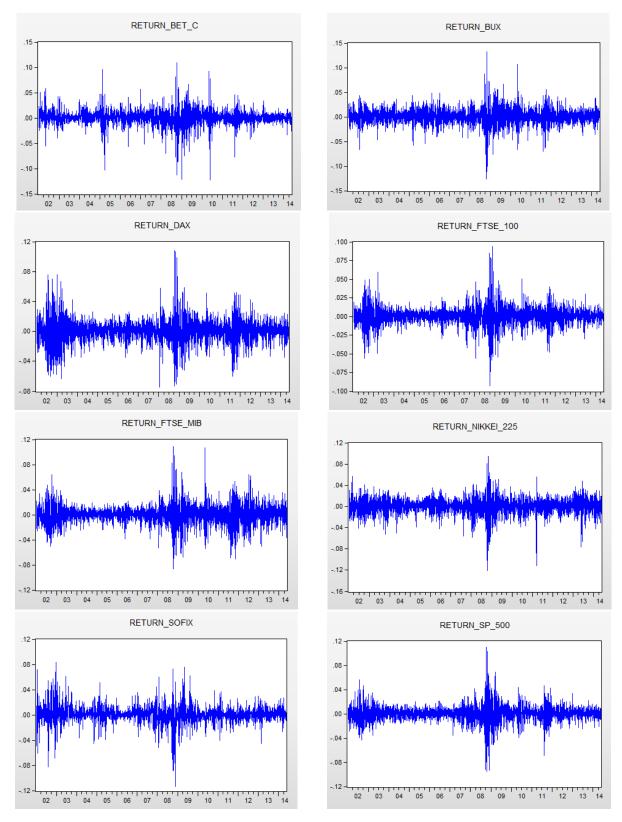



Figure 4. Q-Q Plot 54

Figure 5. Evolution of daily returns

Augmented Dickey-Fuller Unit Root Test on RETURN_BET_C

Null Hypothesis: RETURN_BET_C has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=28)

	t-Statistic	Prob.*
ler test statistic	-51.74986	0.0001
1% level	-3.432186	
5% level	-2.862237	
10% level	-2.567185	
	5% level	Ier test statistic -51.74986 1% level -3.432186 5% level -2.862237

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN_BET_C) Method: Least Squares Date: 05/24/14 Time: 11:38 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_BET_C(-1)	-0.906779	0.017522	-51.74986	0.0000
C	0.000526	0.000264	1.994930	0.0461

Augmented Dickey-Fuller Unit Root Test on RETURN_DAX

Null Hypothesis: RETURN_DAX has a unit root Exogenous: None Lag Length: 0 (Automatic - based on SIC, maxlag=28)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-58.35544	0.0001
Test critical values:	1% level	-2.565678	
	5% level	-1.940922	
	10% level	-1.616634	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN_DAX) Method: Least Squares Date: 05/24/14 Time: 11:52 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_DAX(-1)	-1.026334	0.017588	-58.35544	0.0000

Augmented Dickey-Fuller Unit Root Test on RETURN_BUX

Null Hypothesis: RETURN_BUX has a unit root Exogenous: None Lag Length: 3 (Automatic - based on SIC, maxlag=28)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-27.02303	0.0000
Test critical values:	1% level	-2.565679	
	5% level	-1.940922	
	10% level	-1.616634	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN_BUX) Method: Least Squares Date: 05/24/14 Time: 11:39 Sample (adjusted): 1/09/2002 5/22/2014 Included observations: 3227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_BUX(-1)	-0.955631	0.035364	-27.02303	0.0000
D(RETURN_BUX(-1))	-0.008821	0.030297	-0.291157	0.7710
D(RETURN_BUX(-2))	-0.063476	0.024402	-2.601236	0.0093
D(RETURN_BUX(-3))	-0.080321	0.017555	-4.575358	0.0000

Augmented Dickey-Fuller Unit Root Test on RETURN_FTSE_100

Null Hypothesis: RETURN_FTSE_100 has a unit root Exogenous: None Lag Length: 4 (Automatic - based on SIC, maxlag=28)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-27.49092	0.0000
Test critical values:	1% level	-2.565679	
	5% level	-1.940922	
	10% level	-1.616634	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN_FTSE_100) Method: Least Squares Date: 05/24/14 Time: 11:52 Sample (adjusted): 1/10/2002 5/22/2014 Included observations: 3226 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_FTSE_100(-1)	-1.174833	0.042735	-27.49092	0.0000
D(RETURN_FTSE_100(-1))	0.124628	0.038046	3.275699	0.0011
D(RETURN_FTSE_100(-2))	0.083735	0.031917	2.623506	0.0087
D(RETURN_FTSE_100(-3))	-0.007077	0.025522	-0.277277	0.7816
D(RETURN_FTSE_100(-4))	0.056521	0.017584	3.214290	0.0013

Augmented Dickey-Fuller Unit Root Test on RETURN_FTSE_MIB

Null Hypothesis: RETURN_FTSE_MIB has a unit root Exogenous: None Lag Length: 0 (Automatic - based on SIC, maxlag=28)

 t-Statistic
 Prob.*

 Augmented Dickey-Fuller test statistic
 -57.65096
 0.0001

 Test critical values:
 1% level
 -2.565678

 5% level
 -1.940922

 10% level
 -1.616634

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN_FTSE_MIB) Method: Least Squares Date: 05/24/14 Time: 12:00 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_FTSE_MIB(-1)	-1.014191	0.017592	-57.65096	0.0000

Augmented Dickey-Fuller Unit Root Test on RETURN_SOFIX

Null Hypothesis: RETURN_SOFIX has a unit root

Exogenous: None

Lag Length: 7 (Automatic - based on SIC, maxlag=28)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-17.47361	0.0000
Test critical values:	1% level	-2.565680	
	5% level	-1.940922	
	10% level	-1.616633	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN_SOFIX) Method: Least Squares Date: 05/24/14 Time: 12:09 Sample (adjusted): 1/15/2002 5/22/2014 Included observations: 3223 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_SOFIX(-1)	-0.685214	0.039214	-17.47361	0.0000
D(RETURN_SOFIX(-1))	-0.214395	0.037340	-5.741641	0.0000
D(RETURN_SOFIX(-2))	-0.125238	0.035530	-3.524809	0.0004
D(RETURN_SOFIX(-2))	-0.075533	0.03089	-2.282713	0.0225
D(RETURN_SOFIX(-3))	-0.017970	0.030694	-0.585470	0.5583
D(RETURN_SOFIX(-5))	-0.057431	0.027599	-2.080912	0.0375
D(RETURN_SOFIX(-6))	-0.001773	0.023633	-0.075022	0.9402
D(RETURN_SOFIX(-7))	-0.064985	0.017547	-3.703558	0.0002

Augmented Dickey-Fuller Unit Root Test on RETURN_NIKKEI_225

Null Hypothesis: RETURN_NIKKEI_225 has a unit root Exogenous: None Lag Length: 0 (Automatic - based on SIC, maxlag=28)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-59.43818	0.0001
Test critical values:	1% level	-2.565678	
	5% level	-1.940922	
	10% level	-1.616634	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN_NIKKEI_225) Method: Least Squares Date: 05/24/14 Time: 12:00 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_NIKKEI_225(-1)	-1.045190	0.017584	-59.43818	0.0000

Augmented Dickey-Fuller Unit Root Test on RETURN_SP_500

Null Hypothesis: RETURN_SP_500 has a unit root Exogenous: None Lag Length: 0 (Automatic - based on SIC, maxlag=28)

		t-Statistic	Prob.*
Augmented Dickey-Fu	Augmented Dickey-Fuller test statistic		0.0001
Test critical values:	1% level	-2.565678	
	5% level	-1.940922	
	10% level	-1.616634	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RETURN_SP_500) Method: Least Squares Date: 05/24/14 Time: 12:09 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_SP_500(-1)	-1.125282	0.017458	-64.45599	0.0000

Figure 6. ADF test results

Phillips-Perron Unit Root Test on RETURN_BET_C

Null Hypothesis: RETURN_BET_C has a unit root Exogenous: Constant

Bandwidth: 15 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-52.31744	0.0001
Test critical values:	1% level	-3.432186	
	5% level	-2.862237	
	10% level	-2.567185	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.000224
HAC corrected variance (Bartlett kernel)	0.000264

Phillips-Perron Test Equation Dependent Variable: D(RETURN_BET_C) Method: Least Squares Date: 05/24/14 Time: 11:45 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_BET_C(-1)	-0.906779	0.017522	-51.74986	0.0000
C	0.000526	0.000264	1.994930	0.0461

Phillips-Perron Unit Root Test on RETURN_DAX

Null Hypothesis: RETURN_DAX has a unit root

Exogenous: None

Bandwidth: 9 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-58.55270	0.0001
Test critical values:	1% level	-2.565678	
	5% level	-1.940922	
	10% level	-1.616634	
*MacKinnon (1996) on	e-sided p-values.		

Residual variance (no correction)	0.000236
HAC corrected variance (Bartlett kernel)	0.000209

Phillips-Perron Test Equation Dependent Variable: D(RETURN_DAX) Method: Least Squares Date: 05/24/14 Time: 11:55 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_DAX(-1)	-1.026334	0.017588	-58.35544	0.0000

Phillips-Perron Unit Root Test on RETURN_BUX

Null Hypothesis: RETURN_BUX has a unit root Exogenous: None Bandwidth: 7 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-54.92960	0.0001
Test critical values:	1% level	-2.565678	
	5% level	-1.940922	
	10% level	-1.616634	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.000253
HAC corrected variance (Bartlett kernel)	0.000244

Phillips-Perron Test Equation Dependent Variable: D(RETURN_BUX) Method: Least Squares Date: 05/24/14 Time: 11:45 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_BUX(-1)	-0.966594	0.017589	-54.95419	0.0000

Phillips-Perron Unit Root Test on RETURN_FTSE_100

Null Hypothesis: RETURN_FTSE_100 has a unit root Exogenous: None Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	tistic	-60.28837	0.0001
Test critical values:	1% level	-2.565678	
5% level		-1.940922	
	10% level	-1.616634	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.000151
HAC corrected variance (Bartlett kernel)	0.000137

Phillips-Perron Test Equation Dependent Variable: D(RETURN_FTSE_100) Method: Least Squares Date: 05/24/14 Time: 11:55 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	Error t-Statistic	
RETURN_FTSE_100(-1)	-1.055004	0.017565	-60.06317	0.0000

Phillips-Perron Unit Root Test on RETURN_FTSE_MIB

Adj. t-Stat

-57.67984

-2.565678

-1.940922

-1.616634

Prob.*

0.0001

0.000231

0.000221

Null Hypothesis: RETURN_FTSE_MIB has a unit root Exogenous: None

Phillips-Perron test statistic

*MacKinnon (1996) one-sided p-values.

HAC corrected variance (Bartlett kernel)

Dependent Variable: D(RETURN_FTSE_MIB)

Included observations: 3230 after adjustments

Sample (adjusted): 1/04/2002 5/22/2014

Residual variance (no correction)

Phillips-Perron Test Equation

Date: 05/24/14 Time: 12:02

Method: Least Squares

Test critical values:

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

1% level

5% level

10% level

Phillips-Perron Unit Root Test on RETURN_NIKKEI_225

Prob.*

Prob.*

0.0001

0.000161

0.000143

Prob.

0.0000

Null Hypothesis: RETURN_NIKKEI_225 has a unit root Exogenous: None Bandwidth: 9 (Newey-West automatic) using Bartlett kernel

 1.1		-	
			Adj. t-Stat

Test critical values:	1% level 5% level	-2.565678	
		-1.940922	
	10% level	-1.616634	

Residual variance (no correction)	0.000230
HAC corrected variance (Bartlett kernel)	0.000219

Phillips-Perron Test Equation Dependent Variable: D(RETURN_NIKKEI_225) Method: Least Squares Date: 05/24/14 Time: 12:02 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_NIKKEI_225(-1)	-1.045190	0.017584	-59.43818	0.0000

Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic
-1.014191	0.017592	-57.65096	0.0000	RETURN_NIKKEI_225(-1)	-1.045190	0.017584	-59.43818
erron Unit Root	t Test on RET	URN_SOFIX		Phillips-Pe	rron Unit Root Te	st on RET	JRN_SP_500
-		t kernel		Exogenous: None			kernel
		Adj. t-Stat	Prob.*				Adj. t-Stat
tic 1% level 5% level 10% level		-2.565678 -1.940922	0.0001	Phillips-Perron test statis Test critical values:	tic 1% level 5% level 10% level		-65.01303 -2.565678 -1.940922 -1.616634
sided p-values.				*MacKinnon (1996) one-s	sided p-values.		
rrection) Bartlett kernel)			0.000180 0.000325				1
- 1:12 2002 5/22/2014	4			Dependent Variable: D(R Method: Least Squares Date: 05/24/14 Time: 12 Sample (adjusted): 1/04/	ETURN_SP_500) ::12 2002 5/22/2014		
	-1.014191 erron Unit Roof N_SOFIX has a /est automatic) stic 1% level 1% level 1% level 1% level 1% level sided p-values. rrection) Bartlett kernel) ation 2ETURN_SOFI) 212 2002 5/22/2014	-1.014191 0.017592 erron Unit Root Test on RET N_SOFIX has a unit root /est automatic) using Bartlet stic 1% level 5% level 10% level sided p-values. rrection) Bartlett kernel) ation teTURN_SOFIX)	-1.014191 0.017592 -57.65096 erron Unit Root Test on RETURN_SOFIX N_SOFIX has a unit root /est automatic) using Bartlett kernel Adj.t-Stat stic -54.86382 1% level -2.565678 5% level -1.940922 10% level -1.616634 sided p-values. rrection) Bartlett kernel) ation 2ETURN_SOFIX) 2:12 2002 5/22/2014	-1.014191 0.017592 -57.65096 0.0000 erron Unit Root Test on RETURN_SOFIX N_SOFIX has a unit root /est automatic) using Bartlett kernel Adj. t-Stat Prob.* stic -54.86382 0.0001 1% level -2.565678 5% level -1.940922 10% level -1.616634 sided p-values. 0.000180 rrection) 0.000325 0.000325 ation 2ETURN_SOFIX) 2:12	-1.014191 0.017592 -57.65096 0.0000 erron Unit Root Test on RETURN_SOFIX Phillips-Pee N_SOFIX has a unit root Null Hypothesis: RETUR /est automatic) using Bartlett kernel Bandwidth: 9 (Newey-We Adj. t-Stat Prob.* stic -54.86382 0.0001 1% level -2.565678 5% level -1.940922 10% level -1.616634 sided p-values. *MacKinnon (1996) one-statistic rrection) 0.000180 Bartlett kernel) 0.000325 ation Phillips-Perron Test Equino (1996) one-statistics) terrony 0.000325 ation Phillips-Perron Test Equino (1996) one-statistics) terrony 0.000180 Bartlett kernel) 0.000325 2002 5/22/2014 Phillips-Perron Test Equino (1996) one-statistics)	-1.014191 0.017592 -57.65096 0.0000 erron Unit Root Test on RETURN_SOFIX Phillips-Perron Unit Root Test N_SOFIX has a unit root Exogenous: None /est automatic) using Bartlett kernel Null Hypothesis: RETURN_SP_500 has a Exogenous: None Adj. t-Stat Prob.* /stic -54.86382 0.0001 1% level -2.565678 5% level -1.940922 10% level -1.616634 10% level -1.616634 sided p-values. *MacKinnon (1996) one-sided p-values. rrection) 0.000180 Bartlett kernel) 0.000325 ation Phillips-Perron Test Equation NETURN_SOFIX) Phillips-Perron Test Equation 2002 5/22/2014 Phillips-Perron Test Equation	-1.014191 0.017592 -57.65096 0.0000 erron Unit Root Test on RETURN_SOFIX RETURN_NIKKEL_225(-1) -1.045190 0.017584 N_SOFIX has a unit root Null Hypothesis: RETURN_SP_500 has a unit root Exogenous: None Null Hypothesis: RETURN_SP_500 has a unit root Exogenous: None itic -54.86382 0.0001 Phillips-Perron test statistic 1% level -2.565678 5% level 1% level 5% level -1.940922 10% level 10% level 10% level -1.616634 10% level 10% level sided p-values. *MacKinnon (1996) one-sided p-values. *MacKinnon (1996) one-sided p-values. rrection) 0.000180 Residual variance (no correction) HAC corrected variance (Bartlett kernel) Hillips-Perron Test Equation ation Phillips-Perron Test Equation IETURN_SOFIX) Phillips-Perron Test Equation 2020 25/22/2014 Despendent Variable: D(RETURN_SP_500)

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic
RETURN_SOFIX(-1)	-0.892060	0.017495	-50.98863	0.0000	RETURN_SP_500(-1)	-1.125282	0.017458	-64.45599

Figure 7. PP test results

Correlogram of RETURN_BET_C

Date: 05/24/14 Time: 11:46 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
h		1	0.093	0.093	28.104	0.000
ıp		2	0.025	0.017	30.165	0.000
1	11	3	-0.003	-0.007	30.202	0.000
•	•	4	-0.020	-0.019	31.450	0.000
ŋ	l n	5	0.026	0.030	33.612	0.000
ŋ	l n	6	0.029	0.025	36.318	0.000
III	4	7	0.007	0.001	36.491	0.000
ŋ	l u	8	0.039	0.037	41.371	0.000
ŋ		9	0.026	0.020	43.503	0.000
ŋ	l u	10	0.032	0.027	46.727	0.000
•	II	11	0.015	0.008	47.417	0.000
ŋ	l u	12	0.032	0.031	50.837	0.000
ŋ		13	0.027	0.020	53.119	0.000
ų.	1	14	0.059	0.053	64.394	0.000
φ	p	15	0.057	0.046	75.086	0.000

Correlogram of RETURN_BUX

Date: 05/24/14 Time: 11:46 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.033	0.033	3.5331	0.060
d,	l d	2	-0.059	-0.060	14.846	0.001
¢.	•	3	-0.018	-0.014	15.946	0.001
þ		4	0.082	0.080	37.705	0.000
ų.	i	5	0.021	0.014	39.156	0.000
D,	l di	6	-0.050	-0.043	47.331	0.000
ų.	•	7	0.006	0.014	47.431	0.000
•	II	8	0.020	0.008	48.666	0.000
ų –	•	9	-0.020	-0.025	49.925	0.000
di 🛛	l d	10	-0.041	-0.031	55.378	0.000
•	•	11	0.017	0.019	56.367	0.000
ψ	•	12	0.030	0.019	59.221	0.000
u		13	-0.005	-0.003	59.300	0.000
dı.	•	14	-0.031	-0.020	62.392	0.000
•		15	-0.009	-0.010	62.639	0.000

Correlogram of RETURN_FTSE_100

Correlogram of RETURN_DAX

Date: 05/24/14 Time: 11:49 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Date: 05/24/14 Time: 11:49	
Complet 4/00/0000 E/00/0044	

Sample: 1/02/2002 5/22/2014	4
Included observations: 3231	

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
þ	l di	1	-0.026	-0.026	2.2701	0.132
ų –		2	-0.015	-0.016	2.9873	0.225
dı 🛛	l di	3	-0.041	-0.042	8.4583	0.037
ı)	I)	4	0.017	0.015	9.4170	0.051
¢	¢	5	-0.050	-0.051	17.607	0.003
ų.		6	-0.012	-0.016	18.061	0.006
ı)	i	7	0.013	0.012	18.616	0.009
ı)) ()	8	0.016	0.012	19.442	0.013
ų.	ļ ф	9	-0.007	-0.005	19.580	0.021
•		10	-0.010	-0.011	19.929	0.030
ų.	1 1	11	0.036	0.035	24.140	0.012
l.	II	12	0.002	0.004	24.153	0.019
u		13	0.001	0.003	24.155	0.030
ų.	•	14	0.008	0.011	24.361	0.041
¢.	•	15	-0.010	-0.012	24.664	0.055

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ф	l di	1	-0.055	-0.055	9.8000	0.002
d,		2	-0.030	-0.033	12.750	0.002
d,	_ di	3	-0.089	-0.093	38.473	0.000
ı p	10	4	0.077	0.066	57.727	0.000
di 🛛	0	5	-0.058	-0.057	68.453	0.000
QI	l Q	6	-0.030	-0.040	71.374	0.000
ŋ	l I	7	0.028	0.034	73.936	0.000
ŋ		8	0.032	0.018	77.345	0.000
III	l II	9	-0.008	-0.001	77.547	0.000
¢.	•	10	-0.018	-0.010	78.608	0.000
4	•	11	-0.008	-0.014	78.838	0.000
•	•	12	-0.014	-0.019	79.512	0.000
•	•	13	0.012	0.012	79.946	0.000
4	•	14	-0.011	-0.011	80.305	0.000
¢	•	15	-0.009	-0.015	80.570	0.000

=

Correlogram of RETURN_FTSE_MIB

Date: 05/24/14 Time: 11:58 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
¢.	(I	1	-0.014	-0.014	0.6593	0.417
•	•	2	-0.015	-0.015	1.3557	0.508
d,	0	3	-0.049	-0.050	9.1668	0.027
ф	1	4	0.042	0.041	14.952	0.005
d,	0	5	-0.069	-0.070	30.338	0.000
u	1	6	0.006	0.004	30.467	0.000
ı)		7	0.020	0.022	31.790	0.000
ų.		8	0.028	0.020	34.284	0.000
•	II	9	-0.014	-0.007	34.923	0.000
di 🛛	0	10	-0.027	-0.030	37.324	0.000
ı)		11	0.018	0.019	38.403	0.000
ı)		12	0.022	0.022	39.958	0.000
ı)		13	0.019	0.022	41.145	0.000
II.		14	0.007	0.010	41.288	0.000
1	•	15	-0.006	-0.010	41.411	0.000

Correlogram of RETURN_NIKKEI_225

Date: 05/24/14 Time: 11:58 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
þ		1	-0.045	-0.045	6.6081	0.010
•		2	0.010	0.008	6.9571	0.031
dı 🖉		3	-0.052	-0.051	15.550	0.001
)		4	0.014	0.009	16.145	0.003
)		5	0.011	0.013	16.525	0.005
Ŵ	•	6	-0.013	-0.015	17.096	0.009
•		7	0.009	0.009	17.383	0.015
ų.	•	8	-0.016	-0.014	18.254	0.019
ų.	•	9	-0.017	-0.020	19.196	0.024
I	1	10	0.000	-0.000	19.196	0.038
•		11	0.016	0.015	19.992	0.045
•		12	0.009	0.009	20.272	0.062
•		13	0.023	0.024	21.937	0.056
¢.	•	14	-0.013	-0.009	22.454	0.070
1	1	15	0.003	0.002	22.493	0.096

Correlogram of RETURN_SOFIX

Date: 05/24/14 Time: 12:05 Sample: 1/02/2002 5/22/2014 Included observations: 3231

|--|

Date: 05/24/14 Time: 12:05 Sample: 1/02/2002 5/22/2014 Included observations: 3231

=								
	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorre
_	þ		1	0.107	0.107	36.834	0.000	d
	l l		2	0.118	0.108	81.972	0.000	ų.
	ų –	1 1	3	0.068	0.046	96.959	0.000	ų.
	ų –		4	0.082	0.060	118.86	0.000	ų.
		(r	5	-0.012	-0.038	119.33	0.000	dı.
	ų –		6	0.070	0.058	135.26	0.000	ų.
	dı 🛛	¢	7	-0.042	-0.058	140.98	0.000	dı.
	ų –		8	0.067	0.064	155.66	0.000	ų.
	ų.	II	9	-0.001	-0.006	155.66	0.000	ų.
	ф	g	10	0.053	0.038	164.61	0.000	, j
	ф		11	0.056	0.053	174.63	0.000	, j
	ų –		12	0.076	0.044	193.21	0.000	ų.
	ų.	g	13	0.040	0.026	198.42	0.000	ŋ
	φ –	g	14	0.063	0.025	211.46	0.000	di.
	ф	g	15	0.045	0.029	217.97	0.000	¢.
								'

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
d,	l d	1	-0.125	-0.125	50.887	0.000
¢.	l di	2	-0.015	-0.032	51.660	0.000
ıı	l III	3	0.008	0.002	51.858	0.000
¢.	l 🕴	4	-0.011	-0.010	52.221	0.000
þ	l (5	-0.026	-0.029	54.378	0.000
ų	l 🕴	6	-0.006	-0.014	54.498	0.000
þ	l (7	-0.032	-0.037	57.857	0.000
ų.	ı	8	0.049	0.041	65.637	0.000
¢.	l 🕴	9	-0.024	-0.015	67.572	0.000
ı ı	•	10	0.018	0.014	68.582	0.000
ı)	•	11	0.018	0.019	69.598	0.000
¢.	l 🕴	12	-0.018	-0.013	70.606	0.000
ų.	•	13	0.026	0.024	72.746	0.000
¢	•	14	-0.025	-0.021	74.828	0.000
¢	0	15	-0.029	-0.031	77.600	0.000

Figura nr.8. Daily returns corellogram

Correlogram of SQUARE_RETURN_BET_C

Date: 05/24/14 Time: 12:16 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.313	0.313	316.64	0.000
		2	0.253	0.172	523.54	0.000
<u> </u>		3	0.193	0.084	643.82	0.000
þ	l 🖞	4	0.168	0.065	735.19	0.000
ų –	l 🖞	5	0.143	0.044	801.36	0.000
ų p	1 1	6	0.124	0.032	851.43	0.000
ų p	ф	7	0.139	0.059	913.71	0.000
ų p	<u>ф</u>	8	0.144	0.058	980.62	0.000
i 🗖	p	9	0.158	0.067	1061.5	0.000
_	1 10	10	0.179	0.080	1164.9	0.000
		11	0.226	0.120	1330.5	0.000
_	l 🖞	12	0.186	0.042	1442.9	0.000
<u> </u>	1 1	13	0.172	0.033	1539.4	0.000
þ	•	14	0.118	-0.020	1584.7	0.000
	1	15	0.159	0.058	1667.2	0.000

Correlogram of SQUARE_RETURN_BUX

Date: 05/24/14 Time: 12:16 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.324	0.324	338.52	0.000
		2	0.240	0.151	524.53	0.000
_		3	0.172	0.065	620.25	0.000
i i i i i i i i i i i i i i i i i i i	l 🖞	4	0.156	0.066	698.74	0.000
þ	1	5	0.159	0.075	780.99	0.000
		6	0.208	0.123	920.45	0.000
<u> </u>	l u	7	0.180	0.059	1025.4	0.000
		8	0.260	0.157	1244.8	0.000
		9	0.262	0.120	1467.8	0.000
		10	0.276	0.123	1715.3	0.000
	(t	11	0.152	-0.038	1790.0	0.000
_	1 1	12	0.165	0.033	1878.0	0.000
		13	0.182	0.065	1985.6	0.000
	•	14	0.173	0.024	2082.7	0.000
	1	15	0.175	0.026	2182.2	0.000

Correlogram of SQUARE_RETURN_DAX

Date: 05/24/14 Time: 12:18 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.186	0.186	112.42	0.000
		2	0.268	0.242	344.83	0.000
		3	0.268	0.204	577.56	0.000
		4	0.228	0.124	745.28	0.000
		5	0.280	0.163	998.24	0.000
i 🗖	l 1	6	0.174	0.025	1095.9	0.000
· 🗖	1	7	0.247	0.100	1293.5	0.000
–		8	0.210	0.062	1437.1	0.000
· 🗖		9	0.257	0.116	1650.7	0.000
		10	0.224	0.062	1812.7	0.000
		11	0.279	0.133	2064.6	0.000
	(P	12	0.244	0.068	2257.7	0.000
i 🗖	0	13	0.142	-0.060	2323.0	0.000
· –	•	14	0.214	0.010	2471.1	0.000
μ μ	0	15	0.125	-0.060	2522.0	0.000

Correlogram of SQUARE_RETURN_FTSE_100

Date: 05/24/14 Time: 12:18 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.238	0.238	183.12	0.000
		2	0.302	0.260	477.63	0.000
		3	0.317	0.230	803.77	0.000
<u> </u>		4	0.290	0.158	1075.4	0.000
		5	0.359	0.216	1491.6	0.000
	1	6	0.229	0.031	1661.5	0.000
	l III	7	0.218	-0.004	1815.1	0.000
<u> </u>	(8	0.200	-0.021	1944.7	0.000
		9	0.263	0.087	2168.3	0.000
		10	0.281	0.118	2424.0	0.000
	p	11	0.210	0.041	2566.8	0.000
	p	12	0.239	0.061	2752.4	0.000
	p	13	0.244	0.063	2946.1	0.000
_	0	14	0.176	-0.055	3046.6	0.000
	ļ ļ	15	0.246	0.034	3243.3	0.000

Correlogram of SQUARE_RETURN_FTSE_MIB

Date: 05/24/14 Time: 12:21 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.179	0.179	104.00	0.000
		2	0.214	0.188	252.37	0.000
		3	0.249	0.197	452.55	0.000
		4	0.248	0.168	650.97	0.000
		5	0.268	0.170	884.08	0.000
		6	0.209	0.081	1025.2	0.000
þ	II	7	0.150	-0.003	1098.4	0.000
ļ.	•	8	0.148	-0.011	1169.1	0.000
		9	0.258	0.131	1385.4	0.000
	10	10	0.180	0.047	1490.6	0.000
i i i i i i i i i i i i i i i i i i i	1	11	0.168	0.036	1582.5	0.000
		12	0.225	0.103	1746.6	0.000
	10	13	0.190	0.053	1863.3	0.000
		14	0.175	0.011	1963.1	0.000
	ļ ļ	15	0.186	0.025	2075.6	0.000

Correlogram of SQUARE_RETURN_NIKKEI_225

Date: 05/24/14 Time: 12:21 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.241	0.241	187.45	0.000
		2	0.385	0.347	667.01	0.000
		3	0.241	0.117	854.38	0.000
		4	0.389	0.253	1345.3	0.000
· 🗖	1	5	0.207	0.025	1483.7	0.000
		6	0.380	0.191	1951.3	0.000
_	•	7	0.184	-0.013	2061.2	0.000
	1	8	0.284	0.038	2323.1	0.000
	l 🖞	9	0.203	0.039	2456.9	0.000
		10	0.320	0.104	2789.3	0.000
_		11	0.184	0.013	2899.4	0.000
	l II	12	0.244	-0.003	3092.4	0.000
<u> </u>	1	13	0.190	0.029	3209.9	0.000
_	0	14	0.195	-0.039	3333.0	0.000
P		15	0.193	0.043	3454.6	0.000

Correlogram of SQUARE_RETURN_SOFIX

Date: 05/24/14 Time: 12:22 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Correlogram (of SQUARE	_RETURN_	_SP_500

Date: 05/24/14 Time: 12:22 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.356	0.356	408.91	0.000
		2	0.346	0.252	797.10	0.000
		3	0.309	0.155	1105.6	0.000
<u> </u>	p	4	0.272	0.092	1344.6	0.000
þ	l d	5	0.171	-0.031	1439.7	0.000
–	<u>ф</u>	6	0.219	0.079	1595.4	0.000
þ	l d	7	0.128	-0.030	1648.9	0.000
		8	0.248	0.161	1848.0	0.000
ψ	l di	9	0.112	-0.057	1888.6	0.000
þ	l 🖞	10	0.166	0.045	1977.5	0.000
ļ.	())	11	0.140	0.017	2040.8	0.000
þ	())	12	0.145	0.019	2109.3	0.000
μ	ļ ф	13	0.096	-0.004	2139.0	0.000
þ	ф	14	0.159	0.051	2221.6	0.000
ф	1	15	0.091	-0.004	2248.6	0.000

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.214	0.214	148.37	0.000
		2	0.388	0.359	636.23	0.000
_		3	0.212	0.099	781.82	0.000
		4	0.281	0.126	1036.6	0.000
		5	0.346	0.243	1423.9	0.000
		6	0.308	0.149	1730.4	0.000
		7	0.337	0.133	2098.6	0.000
		8	0.264	0.062	2323.9	0.000
		9	0.308	0.094	2632.2	0.000
		10	0.277	0.067	2881.4	0.000
		11	0.367	0.155	3317.4	0.000
		12	0.306	0.084	3620.6	0.000
	l 🕴	13	0.260	-0.021	3839.6	0.000
ų p		14	0.150	-0.153	3912.6	0.000
Þ	l di	15	0.219	-0.043	4067.9	0.000

Figure 9. Square returns corellogram

Correlogram of ABS_RETURN_BET_C

Date: 05/24/14 Time: 12:25 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.390	0.390	491.51	0.000
		2	0.305	0.180	791.47	0.000
		3	0.281	0.138	1046.3	0.000
	10	4	0.229	0.063	1215.4	0.000
	1	5	0.233	0.089	1391.3	0.000
	10	6	0.205	0.046	1527.2	0.000
	10	7	0.203	0.058	1661.2	0.000
	1	8	0.215	0.070	1810.8	0.000
	10	9	0.206	0.052	1948.6	0.000
	1	10	0.239	0.092	2133.6	0.000
	1	11	0.256	0.092	2346.4	0.000
	1	12	0.222	0.030	2506.0	0.000
		13	0.205	0.020	2642.7	0.000
<u> </u>		14	0.191	0.015	2761.0	0.000
	p	15	0.217	0.062	2913.7	0.000

Correlogram of ABS_RETURN_BUX

Date: 05/24/14 Time: 12:25 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.244	0.244	192.46	0.000
		2	0.206	0.156	330.23	0.000
		3	0.223	0.155	490.54	0.000
_	10	4	0.204	0.112	625.01	0.000
_	10	5	0.195	0.093	748.19	0.000
	10	6	0.201	0.092	879.38	0.000
i de la constante de la consta	10	7	0.179	0.058	982.77	0.000
i de la constante de la consta	1	8	0.186	0.068	1095.3	0.000
	10	9	0.204	0.083	1230.3	0.000
	1	10	0.200	0.072	1360.6	0.000
i de la constante de la consta	1	11	0.165	0.025	1448.5	0.000
_	10	12	0.177	0.043	1549.7	0.000
	1	13	0.192	0.060	1669.7	0.000
_	1	14	0.179	0.040	1773.8	0.000
	1	15	0.176	0.036	1874.3	0.000

Correlogram of ABS_RETURN_DAX

Date: 05/24/14 Time: 12:27 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.217	0.217	151.78	0.000
		2	0.305	0.270	451.99	0.000
		3	0.307	0.227	757.68	0.000
		4	0.281	0.156	1014.1	0.000
		5	0.300	0.152	1306.4	0.000
		6	0.261	0.087	1526.9	0.000
		7	0.294	0.114	1807.9	0.000
		8	0.273	0.083	2048.5	0.000
		9	0.296	0.104	2332.9	0.000
		10	0.259	0.050	2550.3	0.000
	0	11	0.282	0.071	2807.8	0.000
	q	12	0.257	0.037	3022.5	0.000
		13	0.245	0.019	3216.7	0.000
	1	14	0.253	0.027	3424.3	0.000
		15	0.219	-0.008	3579.9	0.000

Correlogram of ABS_RETURN_FTSE_100

Date: 05/24/14 Time: 12:27 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.270	0.270	235.12	0.000
		2	0.326	0.273	578.55	0.000
		3	0.327	0.220	923.77	0.000
		4	0.295	0.142	1204.9	0.000
		5	0.336	0.171	1570.7	0.000
	0	6	0.292	0.097	1846.4	0.000
	1 1	7	0.263	0.045	2071.1	0.000
	l 🖞	8	0.272	0.055	2311.6	0.000
	1 10	9	0.277	0.068	2560.2	0.000
	1 10	10	0.284	0.075	2821.9	0.000
	l 🖞	11	0.277	0.062	3070.3	0.000
	l 🖞	12	0.263	0.043	3295.2	0.000
	l 🖞	13	0.277	0.058	3543.4	0.000
		14	0.236	0.001	3724.6	0.000
P	•	15	0.250	0.019	3928.1	0.000

Correlogram of ABS_RETURN_FTSE_MIB

Date: 05/24/14 Time: 12:28 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.214	0.214	148.77	0.000
ı 🗖		2	0.282	0.247	405.51	0.000
		3	0.283	0.206	664.06	0.000
	🖻	4	0.273	0.160	904.58	0.000
	🖻	5	0.294	0.161	1183.7	0.000
		6	0.282	0.129	1441.2	0.000
	ф (7	0.249	0.071	1641.9	0.000
		8	0.233	0.040	1818.5	0.000
	ф (9	0.266	0.080	2047.0	0.000
	ф (10	0.237	0.046	2229.2	0.000
	ф (11	0.250	0.057	2432.5	0.000
	ф (12	0.237	0.043	2614.7	0.000
		13	0.248	0.058	2814.1	0.000
	0	14	0.233	0.037	2990.9	0.000
	1	15	0.247	0.051	3189.8	0.000

Correlogram of ABS_RETURN_NIKKEI_225

Date: 05/24/14 Time: 12:28 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.187	0.187	113.21	0.000
		2	0.272	0.245	352.39	0.000
		3	0.248	0.181	551.76	0.000
		4	0.272	0.175	790.50	0.000
		5	0.228	0.103	958.51	0.000
· 🗖		6	0.263	0.126	1182.1	0.000
_	1	7	0.213	0.061	1329.3	0.000
_		8	0.237	0.077	1512.0	0.000
_		9	0.186	0.018	1624.3	0.000
	1	10	0.214	0.046	1773.3	0.000
_	1	11	0.173	0.008	1870.6	0.000
	1	12	0.209	0.047	2012.1	0.000
_	q	13	0.185	0.032	2122.7	0.000
_		14	0.176	0.014	2223.1	0.000
P	•	15	0.172	0.020	2319.7	0.000

Correlogram of ABS_RETURN_SOFIX

Date: 05/24/14 Time: 12:30 Sample: 1/02/2002 5/22/2014 Included observations: 3231

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.418	0.418	565.83	0.000
		2	0.373	0.241	1017.0	0.000
		3	0.329	0.141	1366.3	0.000
		4	0.294	0.090	1646.1	0.000
<u> </u>	1 1	5	0.247	0.037	1843.8	0.000
		6	0.269	0.093	2077.6	0.000
· 🗖	l II	7	0.207	0.002	2216.7	0.000
		8	0.247	0.088	2414.9	0.000
	•	9	0.202	0.011	2547.1	0.000
_	1 1	10	0.205	0.034	2683.4	0.000
	l II	11	0.177	0.005	2784.8	0.000
b	•	12	0.173	0.012	2881.6	0.000
b	•	13	0.163	0.021	2968.0	0.000
b	1	14	0.174	0.032	3066.4	0.000
b		15	0.140	-0.006	3129.9	0.000

Correlogram of ABS_RETURN_SP_500

Date: 05/24/14 Time: 12:30 Sample: 1/02/2002 5/22/2014 Included observations: 3231

_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
			1	0.267	0.267	230.71	0.000
			2	0.369	0.320	670.65	0.000
			3	0.326	0.208	1014.3	0.000
			4	0.323	0.158	1352.7	0.000
			5	0.379	0.210	1818.7	0.000
			6	0.349	0.151	2212.5	0.000
			7	0.375	0.154	2667.3	0.000
		1	8	0.314	0.062	2986.4	0.000
		1	9	0.324	0.056	3327.0	0.000
		1	10	0.325	0.059	3670.3	0.000
		1	11	0.338	0.073	4040.1	0.000
		1	12	0.320	0.040	4373.3	0.000
		1	13	0.318	0.037	4701.4	0.000
		0	14	0.260	-0.043	4920.8	0.000
		1	15	0.285	-0.007	5185.3	0.000

Figure 10. Absolute returns corellogram

Variance Ratio Test on RETURN_BET_C

Null Hypothesis: RETURN_BET_C is a martingale Date: 05/24/14 Time: 16:49 Sample: 1/02/2002 5/22/2014 Included observations: 3230 (after adjustments) Heteroskedasticity robust standard error estimates User-specified lags: 2 4 8 16

Joint	Joint Tests		nt Tests Value		df	Probability
Max z (at	period 2)*	10.37315	3230	0.0000		
Individu	ial Tests					
Period	Var. Ratio	Std. Error	z-Statistic	Probability		
2	0.537740	0.044563	-10.37315	0.0000		
4	0.281595	0.078244	-9.181643	0.0000		
8	0.132905	0.110311	-7.860431	0.0000		
16	0.067472	0.147196	-6.335278	0.0000		

*Probability approximation using studentized maximum modulus with parameter value 4 and infinite degrees of freedom

Test Details (Mean = -3.47681534859e-06)

Period	Variance	Var. Ratio	Obs.	
1	0.00041		3230	
2	0.00022	0.53774	3229	
4	0.00012	0.28159	3227	
8	5.5E-05	0.13290	3223	
16	2.8E-05	0.06747	3215	

Variance Ratio Test on RETURN_DAX

Null Hypothesis: RETURN_DAX is a martingale Date: 05/24/14 Time: 16:52 Sample: 1/02/2002 5/22/2014 Included observations: 3230 (after adjustments) Heteroskedasticity robust standard error estimates User-specified lags: 2 4 8 16

Joint	Joint Tests		df	Probability
Max z (a	Max z (at period 2)*		3230	0.0000
Individu	ual Tests			
Period	Var. Ratio	Std. Error	z-Statistic	Probability
2	0.494616	0.033973	-14.87617	0.0000
4	0.239734	0.060048	-12.66090	0.0000
8	0.120224	0.089642	-9.814330	0.0000
16	0.060632	0.129250	-7.267833	0.0000

*Probability approximation using studentized maximum modulus with parameter value 4 and infinite degrees of freedom

Test Details (/lean = -5.3405205523	34e-06)
----------------	-----------------------	---------

Period	Variance	Var. Ratio	Obs.	
1	0.00048		3230	
2	0.00024	0.49462	3229	
4	0.00012	0.23973	3227	
8	5.8E-05	0.12022	3223	
16	2.9E-05	0.06063	3215	

Variance Ratio Test on RETURN_BUX

Null Hypothesis: RETURN_BUX is a martingale Date: 05/24/14 Time: 16:50 Sample: 1/02/2002 5/22/2014 Included observations: 3230 (after adjustments) Heteroskedasticity robust standard error estimates User-specified lags: 2 4 8 16

_	Joint Tests		Value	df	Probability
	Max z (at period 2)*		13.78791	3230	0.0000
	Individu	ual Tests			
_	Period	Var. Ratio	Std. Error	z-Statistic	Probability
	2	0.547839	0.032794	-13.78791	0.0000
	4	0.237670	0.058410	-13.05129	0.0000
	8	0.127081	0.084352	-10.34853	0.0000
	16	0.063326	0 119971	-7 807518	0 0000

*Probability approximation using studentized maximum modulus with parameter value 4 and infinite degrees of freedom

Test Details (Mean = 1.35370148545e-06)

Period	Variance	Var. Ratio	Obs.	
1	0.00049		3230	
2	0.00027	0.54784	3229	
4	0.00012	0.23767	3227	
8	6.2E-05	0.12708	3223	
16	3.1E-05	0.06333	3215	

Variance Ratio Test on RETURN_FTSE_100

Null Hypothesis: RETURN_FTSE_100 is a martingale Date: 05/24/14 Time: 16:52 Sample: 1/02/2002 5/22/2014 Included observations: 3230 (after adjustments) Heteroskedasticity robust standard error estimates User-specified lags: 2 4 8 16

Joint	Joint Tests		Tests Value		df	Probability	
Max z (at	t period 2)*	13.90972	3230	0.0000			
Individu	ual Tests						
Period	Var. Ratio	Std. Error	z-Statistic	Probability			
2	0.488516	0.036772	-13.90972	0.0000			
4	0.219040	0.066737	-11.70206	0.0000			
8	0.115065	0.103257	-8.570192	0.0000			
16	0.058527	0 148685	-6 332012	0 0000			

*Probability approximation using studentized maximum modulus with parameter value 4 and infinite degrees of freedom

Test Details (Mean = -5.92404947165e-06)

Period	Variance	Var. Ratio	Obs.	
1	0.00032		3230	
2	0.00016	0.48852	3229	
4	7.0E-05	0.21904	3227	
8	3.7E-05	0.11506	3223	
16	1.9E-05	0.05853	3215	

Variance Ratio Test on RETURN_FTSE_MIB

Null Hypothesis: RETURN_FTSE_MIB is a martingale Date: 05/24/14 Time: 16:54 Sample: 1/02/2002 5/22/2014 Included observations: 3230 (after adjustments) Heteroskedasticity robust standard error estimates User-specified lags: 2 4 8 16

Joint	Tests	Value	df	Probability
Max z (at period 2)*		15.58898	3230	0.0000
Individu	ual Tests			
Period	Var. Ratio	Std. Error	z-Statistic	Probability
2	0.500461	0.032044	-15.58898	0.0000
4	0.236411	0.056086	-13.61448	0.0000
8	0.120067	0.085682	-10.26973	0.0000
16	0.058225	0.123369	-7.633796	0.0000

*Probability approximation using studentized maximum modulus with parameter value 4 and infinite degrees of freedom

Test Details (Mean = -1.02773375822e-05)

Period	Variance	Var. Ratio	Obs.	
1	0.00047		3230	
2	0.00023	0.50046	3229	
4	0.00011	0.23641	3227	
8	5.6E-05	0.12007	3223	
16	2.7E-05	0.05822	3215	

Variance Ratio Test on RETURN_SOFIX

Null Hypothesis: RETURN_SOFIX is a martingale Date: 05/24/14 Time: 16:56 Sample: 1/02/2002 5/22/2014 Included observations: 3230 (after adjustments) Heteroskedasticity robust standard error estimates User-specified lags: 2 4 8 16

Joint Tests	Value	df	Probability	
Max z (a	t period 2)*	10.54322	3230	0.0000
Individu	ual Tests			
Period	Var. Ratio	Std. Error	z-Statistic	Probability
2	0.492723	0.048114	-10.54322	0.0000
4	0.256709	0.082929	-8.963015	0.0000
8	0.130626	0.116445	-7.465947	0.0000
16	0.063665	0.158012	-5.925730	0.0000

*Probability approximation using studentized maximum modulus with parameter value 4 and infinite degrees of freedom

Test Details (Mean = -3.80508394084e-07)

Variance Ratio Test on RETURN_NIKKEI_225

Null Hypothesis: RETURN_NIKKEI_225 is a martingale Date: 05/24/14 Time: 16:54 Sample: 1/02/2002 5/22/2014 Included observations: 3230 (after adjustments) Heteroskedasticity robust standard error estimates User-specified lags: 2 4 8 16

Joint Tests	Value	df	Probability
Max z (at period 2)*	16.01136	3230	0.0000

Individu	ual Tests			
Period	Var. Ratio	Std. Error	z-Statistic	Probability
2	0.473389	0.032890	-16.01136	0.0000
4	0.236127	0.058615	-13.03203	0.0000
8	0.121883	0.091650	-9.581151	0.0000
16	0.060024	0.132779	-7.079245	0.0000

*Probability approximation using studentized maximum modulus with parameter value 4 and infinite degrees of freedom

Test Details (Mean = 3.94353493562e-06)

Period	Variance	Var. Ratio	Obs.	
1	0.00048		3230	
2	0.00023	0.47339	3229	
4	0.00011	0.23613	3227	
8	5.9E-05	0.12188	3223	
16	2.9E-05	0.06002	3215	

Variance Ratio Test on RETURN_SP_500

Null Hypothesis: RETURN_SP_500 is a martingale Date: 05/24/14 Time: 16:56 Sample: 1/02/2002 5/22/2014 Included observations: 3230 (after adjustments) Heteroskedasticity robust standard error estimates User-specified lags: 2 4 8 16

Joint Tests	Value	df	Probability
Max z (at period 2)*	12.46981	3230	0.0000

Individual Tests Period Var. Ratio 2 0.451375				
Period	Var. Ratio	Std. Error	z-Statistic	Probability
2	0.451375	0.043996	-12.46981	0.0000
4	0.224858	0.077526	-9.998537	0.0000
8	0.106031	0.114849	-7.783887	0.0000
16	0.054117	0.166225	-5.690365	0.0000

*Probability approximation using studentized maximum modulus with parameter value 4 and infinite degrees of freedom

Test Details (Mean = -2.09868919077e-06)

Period	Variance	Var. Ratio	Obs.	Period	Variance	Var. Ratio	Obs.
1	0.00033		3230	1	0.00037		3230
2	0.00016	0.49272	3229	2	0.00017	0.45137	3229
4	8.4E-05	0.25671	3227	4	8.3E-05	0.22486	3227
8	4.3E-05	0.13063	3223	8	3.9E-05	0.10603	3223
16	2.1E-05	0.06367	3215	16	2.0E-05	0.05412	3215

Figure 11. VR test results

	0	1	2	4	5	n m
Akaike	-5.555547	-5.563302	-5.555593	-5.555286	-5.555559	
Schwarz	-5.553665	-5.559538	-5.551829	-5.551522	-5.551795	0
Log likelihood	8975.986	8989.514	8977.061	8976.564	8977.006	0
\mathbb{R}^2	0.000000	0.008339	0.000665	0.000358	0.000631	
Akaike	-5.563557	-5.562656	-5.563252	-5.563410	-5.563003	
Schwarz	-5.559792	-5.558891	-5.557605	-5.557762	-5.559238	1
Log likelihood	8987.145	8985.689	8987.652	8987.907	8986.249	1
\mathbb{R}^2	0.008692	0.007798	0.009003	0.009159	0.008142	
Akaike	-5.555336	-5.562506	-5.554577	-5.555142	-5.555366	
Schwarz	-5.551570	-5.558740	-5.550811	-5.549493	-5.549718	2
Log likelihood	8971.089	8982.666	8969.865	8971.776	8972.139	2
\mathbb{R}^2	0.000637	0.007778	-0.000121	0.001063	0.001287	
Akaike	-5.554477	-5.562305	-5.554552	-5.554661	-5.554634	
Schwarz	-5.550710	-5.556653	-5.548901	-5.549010	-5.548983	4
\mathbb{R}^2	8964.149	8977.779	8965.270	8965.446	8965.403	4
R-squared	0.000386	0.008794	0.001080	0.001189	0.001162	
Akaike	-5.555130	-5.562331	-5.555207	-5.554977	-5.561991	
Schwarz	-5.551361	-5.558563	-5.549554	-5.549324	-5.558222	~
Log likelihood	8962.424	8974.041	8963.549	8963.178	8973.491	5
R-squared	0.000668	0.007839	0.001365	0.001135	0.007501	

Figure 12.1. ARMA - BET-C

_	0	1	2	4	6	n m
Akaike	-5.442397	-5.443294	-5.445023	-5.448646	-5.444391	
Schwarz	-5.440515	-5.441412	-5.443141	-5.446764	-5.442509	0
Log likelihood	8793.192	8794.641	8797.435	8803.288	8796.413	0
R ²	0.000000	0.000897	0.002623	0.006230	0.001992	
Akaike	-5.442884	-5.443374	-5.445325	-5.448875	-5.444751	
Schwarz	-5.441001	-5.439609	-5.441560	-5.445110	-5.440986	1
Log likelihood	8791.257	8793.049	8796.200	8801.933	8795.273	1
\mathbb{R}^2	0.000753	0.001861	0.003807	0.007337	0.003235	
Akaike	-5.445593	-5.446146	-5.453844	-5.450685	-5.446827	
Schwarz	-5.443711	-5.442380	-5.450078	-5.446919	-5.443061	2
Log likelihood	8792.911	8794.803	8807.231	8802.131	8795.902	2
\mathbb{R}^2	0.003111	0.004279	0.011914	0.008788	0.004956	
Akaike	-5.448318	-5.448945	-5.450289	-5.449646	-5.449386	
Schwarz	-5.446435	-5.445177	-5.446521	-5.445878	-5.445618	4
R ²	8791.862	8793.872	8796.041	8795.004	8794.584	4
R-squared	0.006436	0.007673	0.009006	0.008369	0.008111	
Akaike	-5.444134	-5.444801	-5.446051	-5.449373	-5.445155	
Schwarz	-5.442249	-5.441031	-5.442281	-5.445603	-5.441385	
Log likelihood	8779.666	8781.741	8783.757	8789.114	8782.312	6
R-squared	0.002171	0.003454	0.004699	0.008000	0.003806	

Figure 12.2. ARMA - BUX

	0	1	3	4	5	n m
Akaike	-5.512637	-5.513193	-5.514202	-5.512768	-5.515060	
Schwarz	-5.510755	-5.511311	-5.512320	-5.510886	-5.513178	0
Log likelihood	8906.666	8907.564	8909.193	8906.877	8910.579	0
R ²	0.000000	0.000556	0.001563	0.000131	0.002419	
Akaike	-5.513365	-5.514051	-5.514475	-5.512958	-5.515292	
Schwarz	-5.511482	-5.510286	-5.510710	-5.509193	-5.511527	1
Log likelihood	8905.084	8907.192	8907.877	8905.427	8909.197	1
R ²	0.000542	0.001845	0.002269	0.000754	0.003084	
Akaike	-5.514194	-5.514294	-5.513902	-5.513845	-5.516204	
Schwarz	-5.512310	-5.510527	-5.510135	-5.510078	-5.512437	2
Log likelihood	8900.908	8902.070	8901.438	8901.345	8905.153	3
R ²	0.001523	0.002242	0.001851	0.001793	0.004146	
Akaike	-5.512506	-5.512527	-5.513626	-5.513998	-5.514456	
Schwarz	-5.510622	-5.508759	-5.509858	-5.510230	-5.510688	
R ²	8895.428	8896.463	8898.235	8898.835	8899.574	4
R-squared	0.000146	0.000787	0.001884	0.002255	0.002712	
Akaike	-5.514540	-5.514626	-5.515660	-5.514160	-5.515034	
Schwarz	-5.512656	-5.510857	-5.511891	-5.510391	-5.511266	_
Log likelihood	8895.953	8897.092	8898.759	8896.339	8897.750	5
R-squared	0.002366	0.003070	0.004099	0.002604	0.003476	

Figure 12.3. ARMA - DAX

	0	1	3	4	5	n m
Akaike	-5.535881	-5.536004	-5.538186	-5.537506	-5.540864	
Schwarz	-5.533999	-5.534122	-5.536304	-5.535624	-5.538982	0
Log likelihood	8944.215	8944.414	8947.940	8946.840	8952.266	0
R ²	0.000000	0.000123	0.002303	0.001624	0.004971	
Akaike	-5.536350	-5.536432	-5.538105	-5.537319	-5.540629	
Schwarz	-5.534467	-5.532667	-5.534340	-5.533554	-5.536864	1
Log likelihood	8942.205	8943.337	8946.039	8944.770	8950.116	1
R ²	0.000108	0.000808	0.002479	0.001695	0.004993	
Akaike	-5.538074	-5.537623	-5.537500	-5.539203	-5.542423	
Schwarz	-5.536191	-5.533857	-5.533733	-5.535436	-5.538656	3
Log likelihood	8939.451	8939.724	8939.525	8942.273	8947.470	3
R ²	0.002319	0.002488	0.002364	0.004062	0.007264	
Akaike	-5.537186	-5.536653	-5.539038	-5.540564	-5.541494	
Schwarz	-5.535302	-5.532885	-5.535270	-5.536796	-5.537726	
\mathbb{R}^2	8935.249	8935.390	8939.237	8941.699	8943.200	4
R-squared	0.001706	0.001793	0.004171	0.005689	0.006613	
Akaike	-5.539871	-5.539370	-5.541624	-5.540846	-5.540888	
Schwarz	-5.537987	-5.535602	-5.537855	-5.537077	-5.537119	_
Log likelihood	8936.812	8937.004	8940.639	8939.384	8939.452	5
R-squared	0.004655	0.004773	0.007013	0.006240	0.006282	

Figure 12.4. ARMA - FTSE MIB

	0	1	3	4	5	n m
Akaike	-5.958670	-5.961901	-5.967217	-5.964259	-5.962085	
Schwarz	-5.956788	-5.960019	-5.965335	-5.962378	-5.960203	0
Log likelihood	9627.231	9632.451	9641.040	9636.261	9632.748	0
R ²	0.000000	0.003226	0.008511	0.005574	0.003409	
Akaike	-5.962092	-5.965213	-5.969651	-5.966147	-5.964646	
Schwarz	-5.960210	-5.961448	-5.965886	-5.962383	-5.960881	1
Log likelihood	9629.779	9635.819	9642.986	9637.328	9634.902	1
R ²	0.002989	0.006711	0.011109	0.007638	0.006147	
Akaike	-5.966488	-5.968807	-5.969132	-5.971420	-5.969386	
Schwarz	-5.964604	-5.965040	-5.965365	-5.967653	-5.965619	3
Log likelihood	9630.911	9635.654	9636.179	9639.872	9636.588	3
\mathbb{R}^2	0.007907	0.010818	0.011140	0.013400	0.011391	
Akaike	-5.964314	-5.965859	-5.971979	-5.964249	-5.966633	
Schwarz	-5.962431	-5.962091	-5.968212	-5.960481	-5.962865	4
\mathbb{R}^2	9624.421	9627.914	9637.789	9625.315	9629.163	4
R-squared	0.005918	0.008067	0.014119	0.006468	0.008835	
Akaike	-5.961377	-5.963816	-5.969496	-5.966012	-5.961385	
Schwarz	-5.959493	-5.960047	-5.965727	-5.962244	-5.957617	_
Log likelihood	9616.702	9621.635	9630.797	9625.178	9617.715	5
R-squared	0.003266	0.006309	0.011938	0.008490	0.003891	

_	3	3 si 5	1 si 3	1, 3 si 5	n m
Akaike	-5.975925				
Schwarz	-5.968387				1 4 . 5
Log likelihood	9643.167				1, 4 si 5
R ²	0.019486				
Akaike	-5.974082	-5.976048			
Schwarz	-5.968430	-5.968512			1 si 4
Log likelihood	9642.181	9646.353			1 81 4
R^2	0.016799	0.019338			
Akaike	-5.974204		-5.976292		
Schwarz	-5.968551		-5.968754		4 si 5
Log likelihood	9639.391		9643.758		4 81 5
\mathbf{R}^2	0.017188		0.019846		
Akaike	-5.971979	-5.974168	-5.973894	-5.976407	
Schwarz	-5.968212	-5.968517	-5.968242	-5.968872	4
\mathbf{R}^2	9637.789	9642.321	9641.878	9646.933	4
R-squared	0.014119	0.016884	0.016615	0.019691	

Figure 12.5. ARMA - FTSE 100

	0	1	2	3	4	n m
Akaike	-5.535568	-5.537541	-5.535632	-5.538276	-5.535718	
Schwarz	-5.533686	-5.535659	-5.533750	-5.536394	-5.533836	0
Log likelihood	8943.709	8946.897	8943.814	8948.085	8943.953	0
\mathbf{R}^2	0.000000	0.001971	0.000065	0.002705	0.000151	
Akaike	-5.537348	-5.537645	-5.536764	-5.539360	-5.536875	
Schwarz	-5.535465	-5.533880	-5.532999	-5.535595	-5.533110	1
Log likelihood	8943.816	8945.296	8943.874	8948.067	8944.053	1
\mathbf{R}^2	0.002002	0.002916	0.002038	0.004625	0.002148	
Akaike	-5.536370	-5.537778	-5.535993	-5.538431	-5.535958	
Schwarz	-5.534487	-5.534013	-5.532227	-5.534665	-5.532192	2
Log likelihood	8939.469	8942.743	8939.861	8943.797	8939.804	2
R ²	0.000077	0.002103	0.000319	0.002754	0.000285	
Akaike	-5.538669	-5.540014	-5.538139	-5.538446	-5.538209	
Schwarz	-5.536785	-5.536248	-5.534372	-5.534679	-5.534442	2
\mathbf{R}^2	8940.411	8943.583	8940.556	8941.051	8940.669	3
R-squared	0.002627	0.004585	0.002717	0.003023	0.002786	
Akaike	-5.536582	-5.537982	-5.536083	-5.538652	-5.539219	
Schwarz	-5.534698	-5.534215	-5.532315	-5.534884	-5.535451	
Log likelihood	8934.275	8937.534	8934.470	8938.614	8939.530	4
R-squared	0.000150	0.002167	0.000271	0.002835	0.003401	

Figure 12.6. ARMA - NIKKEI 225

	0	1	2	5	8	n m
Akaike	-5.882762	-5.899205	-5.882859	-5.883257	-5.884887	
Schwarz	-5.880880	-5.897323	-5.880977	-5.881375	-5.883005	0
Log likelihood	9504.602	9531.166	9504.758	9505.401	9508.035	0
R ²	0.000000	0.016309	0.000097	0.000495	0.002123	
Akaike	-5.898290	-5.898680	-5.898653	-5.898463	-5.899436	
Schwarz	-5.896407	-5.894916	-5.894888	-5.894699	-5.895671	1
Log likelihood	9526.738	9528.369	9528.325	9528.018	9529.589	1
R ²	0.015562	0.016556	0.016529	0.016342	0.017298	
Akaike	-5.882465	-5.898420	-5.881846	-5.882499	-5.884149	
Schwarz	-5.880582	-5.894654	-5.878081	-5.878733	-5.880383	2
Log likelihood	9498.240	9524.999	9498.241	9499.294	9501.958	2
R ²	0.000100	0.016536	0.000101	0.000753	0.002401	
Akaike	-5.882109	-5.898298	-5.881751	-5.882263	-5.883868	
Schwarz	-5.880224	-5.894530	-5.877982	-5.878494	-5.880099	~
R ²	9488.841	9515.955	9489.265	9490.090	9492.679	5
R-squared	0.000516	0.017176	0.000778	0.001289	0.002891	
Akaike	-5.883188	-5.898672	-5.882830	-5.883308	-5.882979	
Schwarz	-5.881302	-5.894900	-5.879058	-5.879536	-5.879208	0
Log likelihood	9481.757	9507.709	9482.181	9482.951	9482.421	8
R-squared	0.002265	0.018204	0.002527	0.003004	0.002676	

Figure 12.7. ARMA - S&P 500

	0	1	2	4	6	n m
Akaike	-5.771775	-5.780023	-5.783069	-5.776710	-5.774912	
Schwarz	-5.769893	-5.778141	-5.781187	-5.774829	-5.773030	0
Log likelihood	9325.303	9338.627	9343.548	9333.276	9330.370	0
\mathbb{R}^2	0.000000	0.008214	0.011231	0.004923	0.003132	
Akaike	-5.781823	-5.798788	-5.790819	-5.786786	-5.786786	
Schwarz	-5.779940	-5.795023	-5.787054	-5.783021	-5.783022	1
Log likelihood	9338.644	9367.042	9354.173	9347.660	9347.660	1
\mathbb{R}^2	0.010304	0.027555	0.019775	0.015813	0.015814	
Akaike	-5.788402	-5.796229	-5.803634	-5.791544	-5.790308	
Schwarz	-5.786519	-5.792463	-5.799868	-5.787779	-5.786542	2
Log likelihood	9346.375	9360.012	9371.967	9352.449	9350.452	2
R ²	0.012873	0.021176	0.028397	0.016579	0.015362	
Akaike	-5.780473	-5.789172	-5.791362	-5.791750	-5.782732	
Schwarz	-5.778589	-5.785404	-5.787594	-5.787982	-5.778964	4
R ²	9327.792	9342.829	9346.363	9346.988	9332.438	4
R-squared	0.005553	0.014777	0.016932	0.017313	0.008412	
Akaike	-5.778089	-5.788266	-5.788331	-5.782323	-5.788015	
Schwarz	-5.776204	-5.784497	-5.784561	-5.778554	-5.784245	
Log likelihood	9318.168	9335.580	9335.684	9325.996	9335.174	6
R-squared	0.003685	0.014385	0.014449	0.008510	0.014137	

_	2	2 si 5	1 si 2	1, 2 si 5	n
Akaike	-5.814182				
Schwarz	-5.806644				1.2 .: 5
Log likelihood	9382.275				1, 2 si 5
R ²	0.040529				
Akaike	-5.806947	-5.819696			
Schwarz	-5.801298	-5.812165			1 -: 2
Log likelihood	9378.316	9399.9			1 si 2
R ²	0.03221	0.045062			
Akaike	-5.804322		-5.811911		
Schwarz	-5.798669		-5.804373		2 si 5
Log likelihood	9365.371		9378.612		2 81 5
R ²	0.030421		0.038347		
Akaike	-5.803634	-5.804049	-5.806926	-5.814646	
Schwarz	-5.799868	-5.7984	-5.801277	-5.807114	2
R ²	9371.967	9373.636	9378.282	9391.746	2
R-squared	0.028397	0.029401	0.03219	0.040227	

Figure 12.8. ARMA - SOFIX

Dependent Variable: RETURN_BET_C Method: Least Squares Date: 05/25/14 Time: 00:46 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RETURN_BET_C(-1)	0.000526 0.093221	0.000264 0.017522	1.994930 5.320100	0.0461 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008692 0.008385 0.014980 0.724383 8987.145 28.30347 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0.000581 0.015043 -5.563557 -5.559792 -5.562208 2.003313

Dependent Variable: RETURN_BUX Method: Least Squares Date: 05/24/14 Time: 22:25 Sample (adjusted): 1/07/2002 5/22/2014 Included observations: 3229 after adjustments Convergence achieved after 7 iterations MA Backcast: 1/03/2002 1/04/2002

Variable	Coefficient	Std. Error	Prob.	
RETURN_BUX(-2) MA(2)	-0.821603 0.759593	0.058591 0.066906	0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.011914 0.011608 0.015825 0.808130 8807.231 1.928910	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir	ent var iterion rion	0.000296 0.015918 -5.453844 -5.450078 -5.452494

Figure 13.1. AR(1) – **BET-C**

Figure 13.2. ARMA(2,2) – BUX

Dependent Variable: RETURN_DAX Method: Least Squares Date: 05/24/14 Time: 23:27 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments Convergence achieved after 5 iterations MA Backcast: 1/01/2002 1/07/2002

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RETURN_DAX(-3) MA(5)	-0.041036 -0.052012	0.017585 0.017585	-2.333569 -2.957750	0.0197 0.0031
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.004146 0.003837 0.015339 0.759039 8905.153 2.052431	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.000192 0.015369 -5.516204 -5.512437 -5.514854

Dependent Variable: RETURN_FTSE_100 Method: Least Squares Date: 05/25/14 Time: 02:24 Sample (adjusted): 1/09/2002 5/22/2014 Included observations: 3227 after adjustments Convergence achieved after 6 iterations MA Backcast: 1/02/2002 1/08/2002

Variable	Coefficient	Std. Error t-Statistic		Prob.
RETURN_FTSE_100(-4)	0.077791	0.017665 4.403690		0.0000
MA(1)	-0.055223	0.017566	-3.143675	0.0017
MA(3)	-0.094939	0.017521	-5.418468	0.0000
MA(5)	-0.056580	0.017488 -3.235391		0.0012
R-squared	0.019691	Mean dependent var		8.11E-05
Adjusted R-squared	0.018778	S.D. depende	ent var	0.012298
S.E. of regression	0.012182	Akaike info cr	iterion	-5.976407
Sum squared resid	0.478330	Schwarz crite	-5.968872	
Log likelihood	9646.933	Hannan-Quin	-5.973707	
Durbin-Watson stat	1.993533			

Figure 13.3. ARMA(3,5) – **DAX**

Figure 13.4. AR(4)MA(1)MA(3)MA(5) – FTSE 10

Dependent Variable: RETURN_FTSE_MIB Method: Least Squares Date: 05/25/14 Time: 00:22 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments Convergence achieved after 6 iterations MA Backcast: 1/01/2002 1/07/2002

Variable	Coefficient	Std. Error	Prob.	
RETURN_FTSE_MIB(-3) MA(5)	-0.048347 -0.072727	0.017584 0.017570	-2.749433 -4.139407	0.0060 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.007264 0.006956 0.015139 0.739396 8947.470 2.018552	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	-0.000143 0.015192 -5.542423 -5.538656 -5.541073

Dependent Variable: RETURN_NIKKEI_225 Method: Least Squares Date: 05/25/14 Time: 00:43 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments Convergence achieved after 4 iterations MA Backcast: 1/07/2002

Variable	Coefficient	Std. Error t-Statistic		Prob.
RETURN_NIKKEI_225(-3) MA(1)	-0.050663 -0.043985	0.017577 0.017595	-2.882340 -2.499861	0.0040 0.0125
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.004585 0.004277 0.015158 0.741179 8943.583 1.999490	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	8.37E-05 0.015190 -5.540014 -5.536248 -5.538665

Figure 13.5. ARMA(3,5) – FTSE MIB

Dependent Variable: RETURN SOFIX Method: Least Squares Date: 05/25/14 Time: 11:55 Sample (adjusted): 1/07/2002 5/22/2014 Included observations: 3229 after adjustments Convergence achieved after 9 iterations MA Backcast: 12/31/2001 1/04/2002

Coefficient

0.088230

0.878080

-0.805026

-0.106856

0.045062

0.044174

0.013175

1.994088

t-Statistic

6.832638

44.56972

-32.10617

-7.106910

Std. Error

0.012913

0.019701

0.025074

0.015035

Mean dependent var

S.D. dependent var

Akaike info criterion

0.559829 Schwarz criterion

9399.900 Hannan-Quinn criter.

Variable

RETURN SOFIX(-1)

RETURN SOFIX(-2)

MA(2)

MA(5)

Adjusted R-squared

S.E. of regression

Sum squared resid

Durbin-Watson stat

Log likelihood

R-squared

Figure 13.6. ARMA(3,1) – NIKKEI 225

Dependent Variable: RETURN SP 500 Method: Least Squares Date: 05/25/14 Time: 01:15 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments Convergence achieved after 6 iterations MA Backcast: 12/25/2001 1/03/2002

Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
0.0000 0.0000 0.0000 0.0000	RETURN_SP_500(-1) MA(8)	-0.123455 0.040574	0.017470 0.017596	-7.066685 2.305947	0.0000 0.0212
0.000514 0.013476 -5.819696 -5.812165 -5.816997	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.017298 0.016994 0.012664 0.517724 9529.589 2.007995	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.000150 0.012773 -5.899436 -5.895671 -5.898087

Figure 13.7. AR(1)AR(2)MA(2)MA(5) – SOFIX

Figure 13.8. ARMA(1,8) – S&P 500

Correlogram of Residuals

Date: 05/25/14 Time: 22:28 Sample: 1/04/2002 5/22/2014 Included observations: 3230

 Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
h	II	1	-0.002	-0.002	0.0097	0.921
•	•	2	0.017	0.017	0.9703	0.616
u .	l III	3	-0.004	-0.004	1.0205	0.796
•	l 🕴	4	-0.022	-0.023	2.6562	0.617
φ	l 🖞	5	0.026	0.026	4.7657	0.445
ų.	0	6	0.027	0.028	7.0603	0.315
u .	l III	7	0.001	0.000	7.0639	0.422
ų.	l 🖞	8	0.037	0.036	11.460	0.177
•) (<u>)</u>	9	0.020	0.021	12.703	0.176
ų.	0	10	0.028	0.028	15.255	0.123
)	l III	11	0.009	0.007	15.505	0.161
ψ	l 🖞	12	0.029	0.029	18.249	0.108
•) (<u>)</u>	13	0.018	0.018	19.321	0.113
ф	0	14	0.052	0.050	28.035	0.014
φ	l 🖞	15	0.050	0.049	36.249	0.002

Figure 14.1. AR(1) – BET-C correlogram

Correlogram of Residuals

Date: 05/25/14 Time: 22:41 Sample: 1/08/2002 5/22/2014 Included observations: 3228 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
þ		1	-0.026	-0.026	2.2540	
•		2	-0.017	-0.018	3.1732	0.075
u	ф	3	-0.001	-0.002	3.1771	0.204
ų.		4	0.015	0.015	3.8926	0.273
u	ф	5	0.001	0.001	3.8936	0.421
¢.		6	-0.013	-0.012	4.4327	0.489
•		7	0.013	0.013	4.9915	0.545
•		8	0.016	0.016	5.8401	0.559
u	ф	9	-0.006	-0.005	5.9478	0.653
		10	-0.011	-0.011	6.3693	0.702
ŋ		11	0.037	0.036	10.863	0.368
III	W	12	0.004	0.005	10.910	0.451
III	III	13	-0.001	0.001	10.911	0.537
III	•	14	0.008	0.009	11.119	0.601
Ņ	•	15	-0.013	-0.014	11.644	0.635

Figure 14.3. ARMA(3,5) – DAX correlogram

Correlogram of Residuals

Date: 05/25/14 Time: 23:14 Sample: 1/07/2002 5/22/2014 Included observations: 3229 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
φ		1	0.035	0.035	3.9831	
•		2	0.014	0.012	4.5867	0.032
•	l (3	-0.019	-0.020	5.7141	0.057
•	1	4	0.024	0.026	7.6315	0.054
•		5	0.021	0.020	9.0541	0.060
u III	l II	6	-0.002	-0.004	9.0660	0.106
u III	l II	7	0.007	0.007	9.2098	0.162
•	l (8	-0.022	-0.022	10.716	0.152
•	l (9	-0.022	-0.022	12.258	0.140
•	l II	10	-0.010	-0.008	12.563	0.183
•		11	0.019	0.019	13.731	0.186
u III	l III	12	0.003	0.002	13.765	0.246
u III	l III	13	-0.007	-0.006	13.903	0.307
•	1	14	-0.010	-0.008	14.244	0.357
ų.	l II	15	-0.007	-0.007	14.421	0.419

Figure 14.2. ARMA(2,2) – BUX correlogram

Correlogram of Residuals

Date: 05/25/14 Time: 22:41 Sample: 1/09/2002 5/22/2014 Included observations: 3227 Q-statistic probabilities adjusted for 3 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ψ		1	0.003	0.003	0.0318	
Į.	(I	2	-0.034	-0.034	3.7018	
ıı		3	0.001	0.001	3.7042	
ıı	u	4	-0.002	-0.003	3.7198	0.054
II		5	-0.000	-0.000	3.7202	0.156
d,	(¹	6	-0.026	-0.026	5.9229	0.115
ŋ	q	7	0.033	0.033	9.3609	0.053
ŋ	q	8	0.029	0.027	12.072	0.034
1		9	-0.008	-0.006	12.289	0.056
•	•	10	-0.013	-0.011	12.842	0.076
¢.	•	11	-0.010	-0.010	13.153	0.107
¢.	•	12	-0.018	-0.020	14.249	0.114
•		13	0.009	0.011	14.536	0.150
II		14	-0.007	-0.008	14.699	0.197
¢.	•	15	-0.015	-0.017	15.463	0.217

Figure 14.4. AR(4)MA(1)MA(3)MA(5) – FTSE correlogram

=

Correlogram of Residuals

Date: 05/25/14 Time: 22:50 Sample: 1/08/2002 5/22/2014 Included observations: 3228 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
¢.	•	1	-0.010	-0.010	0.2948	
¢.	l 🕴	2	-0.017	-0.017	1.2140	0.271
u	l III	3	-0.000	-0.001	1.2143	0.545
þ	l 🖞	4	0.041	0.041	6.7321	0.081
ų	l III	5	0.002	0.003	6.7464	0.150
u	l III	6	0.004	0.006	6.8043	0.236
•	•	7	0.022	0.023	8.4130	0.209
ų.	l 🖞	8	0.027	0.025	10.689	0.153
¢.	l 🕴	9	-0.009	-0.008	10.939	0.205
QI	l (l	10	-0.026	-0.026	13.197	0.154
ų.		11	0.025	0.022	15.146	0.127
ı		12	0.025	0.022	17.180	0.103
ų.		13	0.021	0.022	18.562	0.100
u	1	14	0.005	0.008	18.645	0.135
¢.	•	15	-0.008	-0.010	18.876	0.170

Figure 14.5. ARMA(3,5) – FTSE MIB correlogram

Correlogram of Residuals

Date: 05/25/14 Time: 22:58 Sample: 1/07/2002 5/22/2014 Included observations: 3229 Q-statistic probabilities adjusted for 2 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	l II	1	0.003	0.003	0.0222	
li I	1	2	0.007	0.007	0.1666	
dı.		3	-0.026	-0.026	2.4098	0.121
ų –	•	4	-0.010	-0.010	2.7589	0.252
ų.	l u	5	0.002	0.002	2.7715	0.428
ų –	•	6	-0.009	-0.010	3.0389	0.551
dı.	l Qu	7	-0.042	-0.043	8.7748	0.118
ll ll	l u	8	-0.003	-0.003	8.8070	0.185
ll ll	l u	9	-0.004	-0.004	8.8638	0.263
ų –	•	10	-0.011	-0.014	9.2785	0.319
ψ	10	11	0.050	0.049	17.353	0.043
ų.		12	0.013	0.012	17.867	0.057
ų.		13	0.013	0.011	18.439	0.072
u	11	14	0.004	0.004	18.484	0.102
ψ		15	0.008	0.009	18.685	0.133

Figure 14.7. AR(1)AR(2)MA(2)MA(5) – SOFIX correlogram

Correlogram of Residuals

Date: 05/25/14 Time: 22:50 Sample: 1/08/2002 5/22/2014 Included observations: 3228 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.000	-0.000	0.0005	
•		2	0.010	0.010	0.2955	0.587
Ŵ	l III	3	-0.000	-0.000	0.2959	0.862
) I		4	0.013	0.013	0.8337	0.841
•		5	0.011	0.011	1.2250	0.874
•	•	6	-0.016	-0.016	2.0272	0.845
•		7	0.010	0.010	2.3494	0.885
ę.	•	8	-0.015	-0.015	3.0809	0.877
ų.	•	9	-0.018	-0.018	4.1137	0.847
ψ	l u	10	0.001	0.002	4.1172	0.904
•		11	0.015	0.015	4.8396	0.902
•		12	0.011	0.011	5.2569	0.918
•		13	0.023	0.024	6.9912	0.858
ę.	•	14	-0.011	-0.012	7.4054	0.880
ų.		15	0.003	0.001	7.4264	0.917

Figure 14.6. ARMA(3,1) – NIKKEI 225 correlogram

Correlogram of Residuals

Date: 05/25/14 Time: 22:58 Sample: 1/04/2002 5/22/2014 Included observations: 3230 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ll.		1	-0.004	-0.004	0.0576	
d,	0	2	-0.031	-0.031	3.1638	0.075
ų.	1	3	0.005	0.005	3.2558	0.196
•	(4	-0.012	-0.013	3.7309	0.292
d,	0	5	-0.030	-0.030	6.6198	0.157
•	(6	-0.011	-0.012	7.0172	0.219
d,	0	7	-0.026	-0.028	9.2681	0.159
u I	1	8	0.001	0.000	9.2739	0.234
•	(9	-0.018	-0.021	10.349	0.241
•		10	0.020	0.019	11.701	0.231
•		11	0.018	0.016	12.803	0.235
•	(12	-0.012	-0.012	13.269	0.276
•		13	0.023	0.023	14.987	0.242
dı 🖉		14	-0.026	-0.028	17.183	0.191
U I	(15	-0.029	-0.027	19.912	0.133

Figure 14.8. ARMA(1,8) – S&P 500 correlogram

_

Correlogram of Residuals Squared

Date: 05/25/14 Time: 22:30 Sample: 1/04/2002 5/22/2014 Included observations: 3230

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.336	0.336	364.07	0.000
		2	0.246	0.150	559.90	0.000
		3	0.196	0.087	684.25	0.000
i 🗖	ф	4	0.155	0.048	761.62	0.000
þ	l 🖞	5	0.149	0.058	833.69	0.000
p (1	6	0.120	0.026	880.46	0.000
Þ	l 🖞	7	0.140	0.063	943.62	0.000
Þ	l 🖞	8	0.137	0.049	1004.4	0.000
Þ	l 🖞	9	0.152	0.064	1079.0	0.000
	1	10	0.180	0.084	1183.6	0.000
		11	0.226	0.121	1349.7	0.000
	l 🖞	12	0.189	0.041	1465.1	0.000
i 🗖		13	0.158	0.017	1545.7	0.000
p (•	14	0.118	-0.013	1590.6	0.000
þ	1	15	0.154	0.060	1667.6	0.000

Figure 15.1. AR(1) – BET-C Square return correlogram

Correlogram of Residuals Squared

Date: 07/01/12 Time: 16:18 Sample: 1/09/2002 1/03/2012 Included observations: 2605 Q-statistic probabilities adjusted for 1 ARMA term(s)

Correlogram of Residuals	Squared
--------------------------	---------

Date: 05/25/14 Time: 22:30 Sample: 1/07/2002 5/22/2014 Included observations: 3229 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.341	0.341	376.59	
		2	0.229	0.128	546.39	0.000
	1	3	0.173	0.070	643.16	0.000
ų –	1	4	0.137	0.045	704.27	0.000
ļ. j	1	5	0.154	0.079	780.85	0.000
l l		6	0.186	0.104	893.38	0.000
<u> </u>	1	7	0.191	0.082	1010.9	0.000
		8	0.242	0.134	1200.4	0.000
		9	0.257	0.120	1415.0	0.000
	1	10	0.246	0.092	1611.1	0.000
ų –	0	11	0.146	-0.030	1679.8	0.000
ļ p		12	0.143	0.023	1746.1	0.000
<u> </u>	10	13	0.195	0.093	1868.8	0.000
i i i i i i i i i i i i i i i i i i i	1	14	0.171	0.026	1963.7	0.000
þ	•	15	0.172	0.023	2059.2	0.000

Figure 15.2. ARMA(2,2) – BUX

Square return correlogram

Correlogram of Residuals Squared

Date: 07/01/12 Time: 16:18 Sample: 1/07/2002 1/03/2012 Included observations: 2607 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.176	0.176	80.432		<u> </u>	–	1	0.220	0.220	126.51	
_		2	0.209	0.184	194.40	0.000			2	0.208	0.168	239.63	0.000
· 🗖		3	0.288	0.241	411.16	0.000			3	0.237	0.175	386.66	0.000
–	0	4	0.145	0.049	465.96	0.000	Þ	i D	4	0.163	0.067	456.37	0.000
φ –		5	0.094	-0.020	488.86	0.000	–	i p	5	0.180	0.087	540.88	0.000
ų p	•	6	0.091	-0.016	510.65	0.000	ų –	QI	6	0.067	-0.048	552.69	0.000
ψ	II	7	0.068	0.003	522.63	0.000	þ	ψ	7	0.135	0.063	600.24	0.000
ų p	1	8	0.104	0.071	550.70	0.000	þ	ψ	8	0.138	0.059	649.81	0.000
ψ	•	9	0.057	0.014	559.16	0.000	þ	ų –	9	0.138	0.072	699.65	0.000
ψ	•	10	0.069	0.022	571.45	0.000	–	ų –	10	0.167	0.081	772.31	0.000
ų p	1 1	11	0.087	0.030	591.26	0.000	–	ų –	11	0.159	0.068	838.25	0.000
ψ	•	12	0.062	0.013	601.33	0.000	–	ψ	12	0.160	0.046	905.62	0.000
ψ	•	13	0.066	0.018	612.79	0.000	þ	ı)	13	0.152	0.039	966.03	0.000
ų.	1	14	0.083	0.033	630.81	0.000	–	i p	14	0.208	0.105	1079.0	0.000
P I	1	15	0.121	0.082	669.27	0.000	–	ı)	15	0.157	0.033	1144.1	0.000
φ	II	16	0.061	-0.002	679.05	0.000	p –	ų –	16	0.109	-0.015	1175.5	0.000
φ		17	0.065	-0.005	690.30	0.000	p –	ψ	17	0.149	0.034	1233.5	0.000
P .	1	18	0.134	0.068	737.17	0.000	p –	ψ	18	0.152	0.047	1294.3	0.000
ψ	4	19	0.087	0.031	757.19	0.000	i p	i p	19	0.183	0.080	1382.3	0.000
巾		20	0.080	0.021	773.97	0.000	þ	ф	20	0.166	0.059	1454.7	0.000

Figure 15.3. ARMA(3,5) - DAXFigure 15.4. AR(4)MA(1)MA(3)MA(5) - FTSE 100Square return correlogramSquare return correlogram

Correlogram of Residuals Squared

Date: 05/25/14 Time: 22:52 Sample: 1/08/2002 5/22/2014 Included observations: 3228 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.179	0.179	103.27	
		2	0.226	0.200	268.07	0.000
		3	0.249	0.195	468.87	0.000
		4	0.258	0.177	683.82	0.000
		5	0.271	0.168	920.81	0.000
_	1	6	0.216	0.084	1072.0	0.000
–		7	0.173	0.017	1169.4	0.000
þ	l (l	8	0.153	-0.014	1245.1	0.000
		9	0.253	0.114	1452.9	0.000
þ	10	10	0.187	0.045	1565.7	0.000
		11	0.181	0.041	1671.9	0.000
_		12	0.214	0.082	1819.8	0.000
		13	0.186	0.042	1931.5	0.000
		14	0.178	0.015	2034.2	0.000
Þ	l 🕴	15	0.189	0.030	2150.1	0.000

Figure 15.5. ARMA(3,5) – FTSE MIB la

Correlogram of Residuals Squared

Date: 05/25/14 Time: 22:52 Sample: 1/08/2002 5/22/2014 Included observations: 3228 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.225	0.225	163.09	
		2	0.384	0.351	640.09	0.000
		3	0.222	0.104	798.91	0.000
		4	0.378	0.245	1261.7	0.000
<u> </u>	l 1	5	0.193	0.026	1381.6	0.000
		6	0.367	0.184	1817.4	0.000
_	l III	7	0.183	0.007	1925.8	0.000
	l 1	8	0.277	0.038	2173.6	0.000
<u> </u>	l 1	9	0.189	0.032	2289.0	0.000
	1	10	0.314	0.108	2608.1	0.000
		11	0.177	0.013	2709.4	0.000
	l II	12	0.240	0.003	2895.9	0.000
	l 1	13	0.190	0.038	3013.0	0.000
	l d	14	0.187	-0.040	3126.7	0.000
	l 1	15	0.181	0.032	3233.1	0.000

Figure 15.6. ARMA(3,1) – NIKKEI 225

Square return correlogram

Correlogram of Residuals Squared

Square return correlogram Correlogram of Residuals Squared

Date: 05/25/14 Time: 22:59	Date: 05/25/14 Time: 22:59
Sample: 1/07/2002 5/22/2014	Sample: 1/04/2002 5/22/2014
Included observations: 3229	Included observations: 3230
Q-statistic probabilities adjusted for 2 ARMA term(s)	Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.351	0.351	397.62				1	0.195	0.195	122.78	
		2	0.325	0.230	738.41				2	0.405	0.382	653.64	0.000
		3	0.319	0.181	1067.6	0.000			3	0.213	0.110	800.70	0.000
		4	0.262	0.083	1288.9	0.000			4	0.293	0.129	1077.6	0.000
i i i i i i i i i i i i i i i i i i i	•	5	0.172	-0.024	1384.2	0.000			5	0.352	0.250	1479.6	0.000
		6	0.220	0.082	1541.1	0.000			6	0.300	0.139	1771.9	0.000
i p		7	0.146	-0.010	1610.5	0.000			7	0.343	0.134	2152.7	0.000
		8	0.254	0.164	1820.1	0.000			8	0.248	0.043	2351.9	0.000
i di la constante di la consta	l di	9	0.145	-0.029	1888.2	0.000			9	0.300	0.069	2643.9	0.000
i di la constante di la consta	II	10	0.144	0.000	1955.7	0.000			10	0.277	0.070	2892.5	0.000
i di la constante di la consta	l q	11	0.154	0.025	2032.2	0.000			11	0.352	0.138	3293.5	0.000
þ	•	12	0.115	-0.021	2075.4	0.000			12	0.298	0.071	3580.9	0.000
ų.		13	0.082	-0.006	2097.1	0.000		l (13	0.238	-0.042	3765.2	0.000
þ	1	14	0.124	0.028	2146.7	0.000		📫	14	0.163	-0.134	3851.4	0.000
φ		15	0.083	0.005	2169.2	0.000	i i i i i i i i i i i i i i i i i i i	0	15	0.210	-0.043	3994.9	0.000

Figure 15.7. AR(1)AR(2)MA(2)MA(5) – SOFIX Square return correlogram

Figure 15.8.ARMA(1,8) – S&P 500 Square return correlogram

Heteroskedasticity Test: ARCH

F-statistic	409.5185	Prob. F(1,3227)	0.0000
Obs*R-squared	363.6267	Prob. Chi-Square(1)	0.0000

Test Equation: Dependent Variable: RESID^A2 Method: Least Squares Date: 05/25/14 Time: 22:32 Sample (adjusted): 1/07/2002 5/22/2014 Included observations: 3229 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000149 0.335581	1.34E-05 0.016583	11.13881 20.23656	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.112613 0.112338 0.000730 0.001721 18739.52 409.5185 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.000224 0.000775 -11.60577 -11.60201 -11.60442 2.100940

Heteroskedasticity Test: ARCH

F-statistic	Prob. F(1,3226)	0.0000
Obs*R-squared	Prob. Chi-Square(1)	0.0000

Test Equation: Dependent Variable: RESID^A2 Method: Least Squares Date: 05/25/14 Time: 22:32 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000165 0.341354	1.24E-05 0.016549	13.34787 20.62748	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.116526 0.116252 0.000661 0.001411 19053.89 425.4928 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.000250 0.000703 -11.80415 -11.80038 -11.80280 2.087048

Figure 16.1. ARCH test results AR(1) – BET-C

Heteroskedasticity Test: ARCH

	F-statistic Obs*R-squared		Prob. F(1,3225) Prob. Chi-Square(1)	0.0000 0.0000
--	------------------------------	--	--	------------------

Test Equation: Dependent Variable: RESID⁴2 Method: Least Squares Date: 05/25/14 Time: 22:44 Sample (adjusted): 1/09/2002 5/22/2014 Included observations: 3227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID ^A 2(-1)	0.000192 0.185516	1.13E-05 0.017303	16.88719 10.72139	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.034416 0.034117 0.000602 0.001167 19353.53 114.9481 0.000000	S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000235 0.000612 -11.99351 -11.98974 -11.99216 2.096485

Figure 16.3. ARCH test results ARMA(3,5) – DAX

Figure 16.2. ARCH test results ARMA(2,2) – BUX

Heteroskedasticity Test: ARCH

Test Equation: Dependent Variable: RESID^A2 Method: Least Squares Date: 05/25/14 Time: 22:44 Sample (adjusted): 1/10/2002 5/22/2014 Included observations: 3226 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000115 0.225072	7.86E-06 0.017160	14.61900 13.11611	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.050657 0.050362 0.000422 0.000575 20488.58 172.0325 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000148 0.000433 -12.70092 -12.69715 -12.69957 2.124894

Figure 16.4. ARCH test results AR(4)MA(1)MA(3)MA(5) – FTSE 100

Heteroskedasticity Test: ARCH				Heteroskedasticity Tes	t ARCH				
F-statistic Obs*R-squared	106.4900 103.1500	Prob. F(1,322 Prob. Chi-Squ		0.0000 0.0000	F-statistic Obs*R-squared	171.4602 162.9055			0.0000 0.0000
Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 05/25/14 Time: 22:53 Sample (adjusted): 1/09/2002 5/22/2014 Included observations: 3227 after adjustments		Test Equation: Dependent Variable: RI Method: Least Squares Date: 05/25/14 Time: / Sample (adjusted): 1/0 Included observations:	22:53 9/2002 5/22/20						
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000188 0.178784	1.10E-05 0.017325	17.12582 10.31940	0.0000 0.0000	C RESID^2(-1)	0.000178 0.224679	1.19E-05 0.017159	14.93270 13.09428	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.031965 0.031665 0.000582 0.001092 19460.11 106.4900 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	0.000229 0.000591 -12.05956 -12.05580 -12.05821 2.071637	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.050482 0.050188 0.000639 0.001316 19159.09 171.4602 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0.000230 0.000656 -11.87300 -11.86923 -11.87165 2.157703

0.0000

0.0000

Figure 16.5. ARCH test results ARMA(3,5) – FTSE MIB

452.5793 Prob. F(1,3226)

397.1441 Prob. Chi-Square(1)

Figure 16.6. ARCH test results ARMA(3,1) – NIKKEI 225

Heteroskedasticity Test: ARCH

Dependent Variable: RESID²

Sample (adjusted): 1/07/2002 5/22/2014

Included observations: 3229 after adjustments

Method: Least Squares Date: 05/25/14 Time: 23:00

Test Equation:

Prob(F-statistic)

F-statistic		127.3903	Prob. F(1,3227)	0.0000
Obs*R-squ	ared	122.6283	Prob. Chi-Square(1)	0.0000

Test Equation: Dependent Variable: RESID*2 Method: Least Squares Date: 05/25/14 Time: 23:00 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments

Heteroskedasticity Test: ARCH

F-statistic

Obs*R-squared

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID ^A 2(-1)	0.000113 0.350762	9.15E-06 0.016488	12.30561 21.27391	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.123031 0.122759 0.000494 0.000786 19997.35 452.5793 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0.000173 0.000527 -12.38870 -12.38493 -12.38735 2.161298

Figure 16.7. ARCH test results AR(1)AR(2)MA(2)MA(5) – SOFIX

Variable Coefficient Std. Error t-Statistic Prob. С 0.000129 9.58E-06 13.47935 0.0000 RESID²(-1) 0.194879 0.017266 11.28673 0.0000 0.037977 0.000160 R-squared Mean dependent var Adjusted R-squared 0.037679 S.D. dependent var 0.000531 S.E. of regression 0.000521 Akaike info criterion -12.28143 Sum squared resid 0.000876 Schwarz criterion -12.27766 -12.28008 Log likelihood 19830.37 Hannan-Quinn criter. F-statistic 127.3903 Durbin-Watson stat 2.148756

0.000000

Figure 16.8. ARCH test results ARMA(1,8) – S&P 500

Heteroskedasticity Test: White

F-statistic	221.5869	Prob. F(2,3227)	0.0000
Obs*R-squared	390.0228	Prob. Chi-Square(2)	0.0000
Scaled explained SS	2324.938	Prob. Chi-Square(2)	0.0000

Figure 17.1. WHITE test results AR(1) – BET-C

Heteroskedasticity Test: White

	ob. F(3,3225) 0.0000 rob. Chi-Square(3) 0.0000 rob. Chi-Square(3) 0.0000
--	--

Figure 17.2. WHITE test results ARMA(2,2) – BUX

Heteroskedasticity Test: White

F-statistic	161.9008	Prob. F(3,3224)	0.0000
Obs*R-squared	422.6342	Prob. Chi-Square(3)	0.0000
Scaled explained SS	1429.228	Prob. Chi-Square(3)	0.0000

Figure 17.3. WHITE test results ARMA(3,5) – DAX

Heteroskedasticity Test: White

F-statistic	97.07056	Prob. F(10,3216)	0.0000
Obs*R-squared	748.1937	Prob. Chi-Square(10)	0.0000
Scaled explained SS	3188.237	Prob. Chi-Square(10)	0.0000

Figure 17.4. WHITE test results AR(4)MA(1)MA(3)MA(5) – FTSE 100

Heteroskedasticity Test: White

F-statistic	162.8288	Prob. F(3,3224)	0.0000
Obs*R-squared	424.7381	Prob. Chi-Square(3)	0.0000
Scaled explained SS	1413.315	Prob. Chi-Square(3)	0.0000

Figure 17.5. WHITE test results ARMA(3,5) – FTSE MIB

Heteroskedasticity Test: White

F-statistic	86.84533	Prob. F(3,3224)	0.0000
Obs*R-squared	241.3550	Prob. Chi-Square(3)	0.0000
Scaled explained SS	981.9791	Prob. Chi-Square(3)	0.0000

Figure 17.6. WHITE test results ARMA(3,1) - NIKKEI 225

Heteroskedasticity Test: White

F-statistic	809.4476	Prob. F(10,3218)	0.0000
Obs*R-squared		Prob. Chi-Square(10)	0.0000
Scaled explained SS	3729.383	Prob. Chi-Square(10)	0.0000

Figure 17.7. WHITE test results AR(1)AR(2)MA(2)MA(5) – SOFIX

Heteroskedasticity Test: White

F-statistic Obs*R-squared	Prob. F(3,3226) Prob. Chi-Square(3)	0.0000
Scaled explained SS	Prob. Chi-Square(3) Prob. Chi-Square(3)	0.0000

Figure 17.8. WHITE test results ARMA(1,8) – S&P 500

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	1.089652	Prob. F(1,3227)	0.2966
Obs*R-squared	1.090297	Prob. Chi-Square(1)	0.2964

Figure 18.1. BG test results AR(1) – BET-C

Breusch-Godfrey Serial Correlation LM Test:

F-statistic Obs*R-squared	Prob. F(1,3226) Prob. Chi-Square(1)	0.0437 0.0923

Figure 18.2. BG test results ARMA(2,2) – BUX

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	2.219754	Prob. F(1,3225)	0.1364
Obs*R-squared	1.611008	Prob. Chi-Square(1)	0.2044

Figure 18.3. BG test results ARMA(3,5) – DAX

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	4.986172	Prob. F(1,3222)	0.0256
Obs*R-squared	4.792880	Prob. Chi-Square(1)	0.0286

Figure 18.4. BG test results AR(4)MA(1)MA(3)MA(5) – FTSE 100

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	Prob. F(1,3225)	0.5916
Obs*R-squared	Prob. Chi-Square(1)	1.0000

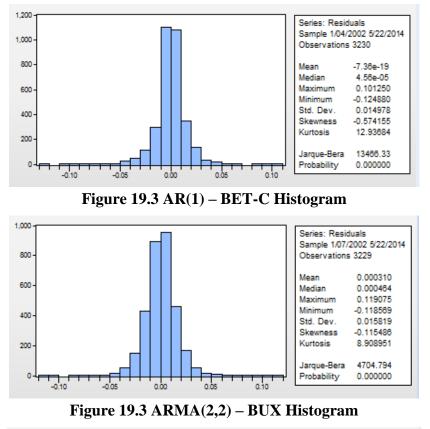
Figure 18.5. BG test results ARMA(3,5) – FTSE MIB

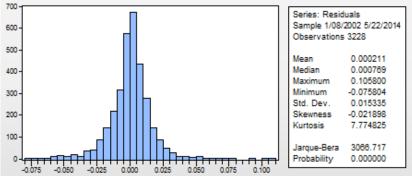
Breusch-Godfrey Serial Correlation LM Test:

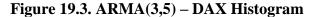
F-statistic	0.218754	Prob. F(1,3225)	0.6400
Obs*R-squared	0.099708	Prob. Chi-Square(1)	0.7522

Figure 18.6. BG test results ARMA(3,1) – NIKKEI 225

Breusch-Godfrey Serial Correlation LM Test:


F-statistic Obs*R-squared		Prob. F(1,3224) Prob. Chi-Square(1)	0.8123
obo it oquarea	0.000000	riob. on oquare(i)	1.0000


Figure 18.7. BG test results AR(1)AR(2)MA(2)MA(5) – SOFIX


Breusch-Godfrey Serial Correlation LM Test:

F-statistic	3.454432	Prob. F(1,3227)	0.0632
Obs*R-squared	2.923412	Prob. Chi-Square(1)	0.0873

Figure 18.9. BG test results ARMA(1,8) – S&P 500

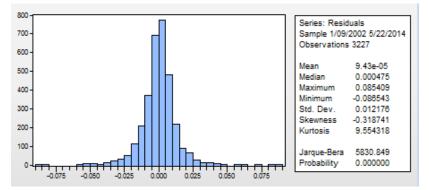
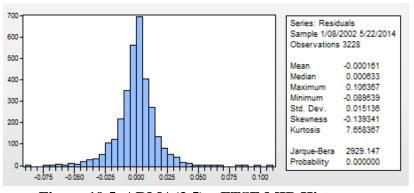
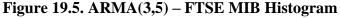




Figure 19.4. AR(4)MA(1)MA(3)MA(5) – FTSE 100 Histogram 83

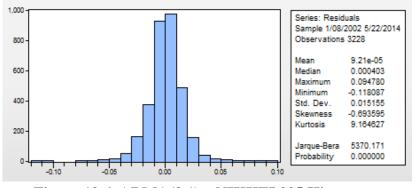


Figure 19.6. ARMA(3,1) – NIKKEI 225 Histogram

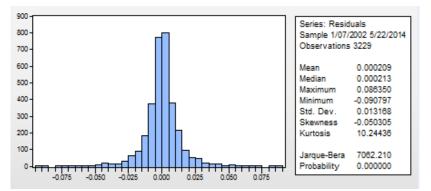


Figure 19.7. AR(1)AR(2)MA(2)MA(5) – SOFIX Histogram

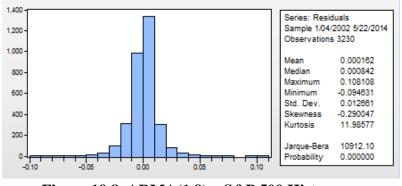


Figure 19.8. ARMA(1,8) – S&P 500 Histogram 84

Dependent Variable: RETURN_BET_C Method: ML - ARCH (Marquardt) - Student's t distribution Date: 05/26/14 Time: 14:58 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments Convergence achieved after 18 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)*2 + C(5)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C RETURN_BET_C(-1)	0.000672 0.084770	0.000159 0.017815	4.230653 4.758422	0.0000 0.0000
	Variance	Equation		
C RESID(-1) ⁴ 2 GARCH(-1) T-DIST. DOF	5.11E-06 0.197431 0.801247 4.568967	1.01E-06 0.021614 0.016230 0.388571	5.083107 9.134232 49.36748 11.75839	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.008533 0.008225 0.014981 0.724499 9880.670 1.985939	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion tion	0.000581 0.015043 -6.114347 -6.103052 -6.110299

Dependent Variable: RETURN_BUX Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) Date: 05/25/14 Time: 07:49 Sample (adjusted): 1/07/2002 5/22/2014 Included observations: 3229 after adjustments Convergence achieved after 18 iterations MA Backcast: 1/03/2002 1/04/2002 Presample variance: backcast (parameter = 0.7) LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5) *RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
RETURN_BUX(-2) MA(2)	-0.718548 0.699326	0.152990 0.157730	-4.696697 4.433693	0.0000 0.0000
	Variance I	Equation		
C(3) C(4) C(5) C(6)	-0.306997 0.163172 -0.046085 0.978582	0.046946 0.017929 0.009730 0.004672	-6.539299 9.100933 -4.736632 209.4540	0.0000 0.0000 0.0000 0.0000
GED PARAMETER	1.474325	0.049864	29.56721	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005701 0.005393 0.015875 0.813212 9269.640 1.931968	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000296 0.015918 -5.737157 -5.723976 -5.732433

Figure 20.1. GARCH(1,1) – BET-C

Dependent Variable: RETURN_DAX Method: ML - ARCH (Marquardt) - Normal distribution Date: 05/26/14 Time: 15:57 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments Convergence achieved after 10 iterations MA Backcast: 1/01/2002 1/07/2002 Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)*2 + C(5)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
RETURN_DAX(-3) MA(5)	-0.030194 -0.034794	0.017900 0.018126	-1.686807 -1.919559	0.0916 0.0549
	Variance	Equation		
C RESID(-1)^2 GARCH(-1)	2.02E-06 0.080019 0.910248	3.63E-07 0.006506 0.007261	5.550711 12.29916 125.3595	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.003741 0.003433 0.015342 0.759347 9569.992 2.052525	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir	ent var iterion rion	0.000192 0.015369 -5.926265 -5.916848 -5.922890

Figure 20.3. GARCH(1,1) – DAX

Figure 20.2. EGARCH(1,1,1) – **BUX**

Dependent Variable: RETURN_FTSE_100 Method: ML - ARCH (Marquardt) - Normal distribution Date: 05/26/14 Time: 16:52 Sample (adjusted): 1/09/2002 5/22/2014 Included observations: 3227 after adjustments Convergence achieved after 15 iterations MA Backcast: 1/02/2002 1/08/2002 Presample variance: backcast (parameter = 0.7) GARCH = C(5) + C(6)*RESID(-1)*2 + C(7)*RESID(-2)*2 + C(8)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
RETURN_FTSE_100(-4) MA(1) MA(3) MA(5)	0.019962 -0.062726 -0.036008 -0.015422	0.018442 0.017798 0.018305 0.017872	1.082450 -3.524289 -1.967142 -0.862891	0.2791 0.0004 0.0492 0.3882
	Variance	Equation		
C RESID(-1) ⁵ 2 RESID(-2) ⁵ 2 GARCH(-1)	1.50E-06 0.059448 0.049735 0.880604	2.91E-07 0.014494 0.017287 0.010487	5.145118 4.101586 2.877082 83.97148	0.0000 0.0000 0.0040 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.011920 0.011001 0.012231 0.482121 10398.46 1.982960	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		8.11E-05 0.012298 -6.439699 -6.424628 -6.434299

Figure 20.4. GARCH(2,1) – FTSE 100

Figure 20.7. EGARCH(1,1,1) – SOFIX

Figure 20.8. EGARCH(2,1,1) – S&P

*RESID(-1)/@SQRT	(GARCH(-1))	+ C(8)*LOG(GA	RCH(-1))		*ABS(RESID(-2)/@S /@SQRT(GARCH(-1			ESID(-1)	
Variable	Coefficient	Std. Error	z-Statistic	Prob.	Variable	Coefficient	Std. Error	z-Statistic	Prob.
RETURN_SOFIX(-1) RETURN_SOFIX(-2) MA(2) MA(5)	0.060901 0.840472 -0.810569 -0.024328	0.012354 0.030344 0.034791 0.011946	4.929717 27.69822 -23.29811 -2.036396	0.0000 0.0000 0.0000 0.0417	RETURN_SP_500(-1) MA(8)	-0.076468 0.009361	0.015192 0.016613	-5.033414 0.563484	0.0000
	Variance					Variance	Equation		
C(5) C(6) C(7) C(8)	-0.943369 0.464986 -0.044994 0.933315	0.101942 0.033229 0.020830 0.009858	-9.254008 13.99346 -2.160092 94.67300	0.0000 0.0000 0.0308 0.0000	C(5) C(6)	-0.294224 -0.125145 0.252789 -0.139159 0.978603	0.032138 0.044809 0.046067 0.011503 0.002751	-9.154999 -2.792831 5.487443 -12.09819 355.7206	0.0000 0.0052 0.0000 0.0000 0.0000
GED PARAMETER	1.068054	0.032699	32.66368	0.0000	GED PARAMETER	1.460838	0.047950	30.46610	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.029677 0.028774 0.013281 0.568849 10378.38 1.950120	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.013476 -6.422657 -6.405711	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.013929 0.013623 0.012686 0.519499 10497.75 2.102132	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.000150 0.012773 -6.495199 -6.480140 -6.489803

Date: 05/26/14 Time: 16:44 Sample (adjusted): 1/07/2002 5/22/2014 Included observations: 3229 after adjustments Convergence achieved after 13 iterations MA Backcast: 12/31/2001 1/04/2002 Presample variance: backcast (parameter = 0.7) LOG(GARCH) = C(5) + C(6)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(7) #PECIDE (1/2002DC) (2012DC) (2012DC) (2012DC) PECIDE (1/2002DC) (2012DC) (2012

Method: ML - ARCH (Marguardt) - Generalized error distribution (GED)

Dependent Variable: RETURN_SP_500 Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) Date: 05/26/14 Time: 16:50 Sample (adjusted): 1/04/2002 5/22/2014 Included observations: 3230 after adjustments Convergence achieved after 17 iterations MA Backcast 12/25/2001 1/03/2002 Presample variance: backcast (parameter = 0.7) LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5) *ABS(RESID(-2)/@SQRT(GARCH(-2))) + C(6)*RESID(-1)

Figure 20.5. GARCH(1,1) – FTSE MIB

Dependent Variable: RETURN_SOFIX

Figure 20.6. GARCH(1,1) – NIKKEI 22	5
-------------------------------------	---

Presample variance: back GARCH = C(3) + C(4)*RES					Presample variance: backc GARCH = C(3) + C(4)*RES		'		
Variable	Coefficient	Std. Error	z-Statistic	Prob.	Variable	Coefficient	Std. Error	z-Statistic	Prob.
RETURN_FTSE_MIB(-3) MA(5)	-0.026186 -0.029998	0.017877 0.017617	-1.464733 -1.702764	0.1430 0.0886	RETURN_NIKKEI_225(-3) MA(1)	0.009170 -0.035908	0.017046 0.020379	0.537972 -1.762060	
	Variance	Equation				Variance	Equation		
C RESID(-1) ⁴ 2 GARCH(-1)	9.82E-07 0.074271 0.923379	2.05E-07 0.005128 0.005134	4.783036 14.48447 179.8604	0.0000 0.0000 0.0000	C RESID(-1) ^A 2 GARCH(-1)	3.41E-06 0.091090 0.895046	7.02E-07 0.006477 0.007820	4.853801 14.06333 114.4521	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005046 0.004737 0.015156 0.741048 9598.664 2.023722	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin	ent var iterion rion	-0.000143 0.015192 -5.944030 -5.934613 -5.940655	S.E. of regression Sum squared resid	0.000923 0.000613 0.015185 0.743907 9361.708 2.018050	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin	nt var terion rion	8.37E-05 0.015190 -5.797217 -5.787800 -5.793842

Dependent Variable: RETURN_FTSE_MIB Method: ML - ARCH (Marquardt) - Normal distribution Date: 05/26/14 Time: 18:09 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments Convergence achieved after 10 iterations MA Backcast: 1/01/2002 1/07/2002 Presample variance: backcast (parameter = 0.7) CADENE = C(2) = C(UADECID(LM) = C(E)CORCH(1) Dependent Variable: RETURN_NIKKEI_225 Method: ML - ARCH (Marquardt) - Normal distribution Date: 05/26/14 Time: 16:40 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments Convergence achieved after 12 iterations MA Backcast: 1/07/2002 Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)*2 + C(5)*GARCH(-1)

Wald Test:	
Equation: GARCH_	BUX

Test Statistic	Value	df	Probability
t-statistic	-4.736632	3222	0.0000
F-statistic	22.43568	(1, 3222)	0.0000
Chi-square	22.43568	1	0.0000

Null Hypothesis: C(5)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(5)	-0.046085	0.009730

Wald Test: Equation: GARCH_SOFIX

Test Statistic	Value	df	Probability
t-statistic	-2.160092	3220	0.0308
F-statistic	4.665999	(1, 3220)	0.0308
Chi-square	4.665999	1	0.0308

Null Hypothesis: C(7)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(7)	-0.044994	0.020830

Wald Test: Equation: GARCH_SP_500

Test Statistic	Value	df	Probability
t-statistic F-statistic	-12.09819 146.3661	3222	0.0000
Chi-square	146.3661	(1, 3222) 1	0.0000

Null Hypothesis: C(6)=0

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.		
C(6)	-0.139159	0.011503		

Figure 21. Wald test results

Correlogram of Standardized Residuals Squared

Date: 05/26/14 Time: 20:16 Sample: 1/04/2002 5/22/2014 Included observations: 3230

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	1	1	0.032	0.032	3.2436	0.072
•	•	2	0.011	0.010	3.6253	0.163
¢I	•	3	-0.014	-0.014	4.2352	0.237
¢I	•	4	-0.024	-0.023	6.1308	0.190
¢.	(I	5	-0.019	-0.017	7.2958	0.200
Q,	l di	6	-0.035	-0.033	11.184	0.083
¢.	(I	7	-0.024	-0.022	12.974	0.073
¢.	•	8	-0.024	-0.024	14.912	0.061
Q,	l di	9	-0.031	-0.031	17.940	0.036
¢.	I (I	10	-0.018	-0.018	18.946	0.041
ψ	1 1	11	0.040	0.039	24.258	0.012
ų.	I (I	12	-0.004	-0.010	24.299	0.019
ų.	I (I	13	-0.004	-0.009	24.347	0.028
ų.	W	14	-0.002	-0.004	24.360	0.041
ų.	4	15	0.009	0.007	24.606	0.055

Figure 22.1. GARCH(1,1) – BET-C Square return correlogram

Correlogram of Standardized Residuals Squared

Correlogram of Standardized Residuals Squared

Date: 05/26/14 Time: 20:16 Sample: 1/07/2002 5/22/2014 Included observations: 3229 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.014	0.014	0.5901	
ılı		2	-0.000	-0.000	0.5901	0.442
ų.	1	3	0.030	0.030	3.5271	0.171
ų.		4	0.003	0.003	3.5646	0.312
ll I	4	5	-0.007	-0.007	3.7293	0.444
ų.		6	-0.006	-0.006	3.8287	0.574
•		7	0.013	0.013	4.3859	0.625
4	•	8	-0.018	-0.018	5.3887	0.613
•		9	0.010	0.011	5.7402	0.676
•		10	0.024	0.023	7.5799	0.577
u II	W	11	-0.007	-0.007	7.7541	0.653
u II	W	12	-0.007	-0.008	7.9343	0.719
ψ	10	13	0.046	0.045	14.795	0.253
ll I		14	0.002	0.001	14.806	0.320
ψ		15	0.003	0.004	14.833	0.390

Figure 22.2. EGARCH(1,1,1) – BUX Square return correlogram

Correlogram of Standardized Residuals Squared

Date: 05/26/14 Time: 20:56 Sample: 1/08/2002 5/22/2014 Included observations: 3228 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ψ	l d	1	-0.030	-0.030	2.9750	
h		2	0.027	0.026	5.2699	0.022
ų.	l 🖞	3	0.037	0.038	9.6270	0.008
•	•	4	0.021	0.022	11.031	0.012
ų.	l III	5	-0.003	-0.003	11.055	0.026
ų.	l (6	-0.006	-0.009	11.175	0.048
u II	l II	7	0.004	0.002	11.237	0.081
ų.	l (8	-0.016	-0.016	12.058	0.099
ų.	ψ	9	-0.001	-0.002	12.063	0.148
ų.	ψ	10	0.001	0.002	12.069	0.209
ų.	1	11	0.036	0.038	16.371	0.089
¢.	l (12	-0.017	-0.014	17.346	0.098
ų.	ψ	13	0.001	-0.002	17.349	0.137
ų.	•	14	-0.011	-0.013	17.736	0.168
ų.	l II	15	-0.018	-0.019	18.748	0.175

Figure 22.3. GARCH(1,1) – DAX Square return correlogram

Date: 05/26/14 Time: 20:56 Sample: 1/09/2002 5/22/2014 Included observations: 3227 Q-statistic probabilities adjusted for 3 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
•	•	1	0.012	0.012	0.4984	
ų.	l III	2	0.006	0.005	0.6001	
•	•	3	0.016	0.016	1.4417	
•		4	0.011	0.011	1.8657	0.172
ψ	l III	5	-0.000	-0.001	1.8665	0.393
ψ	l III	6	0.004	0.004	1.9154	0.590
¢.	l 🕴	7	-0.012	-0.013	2.4038	0.662
•		8	0.010	0.010	2.7430	0.740
¢.	l III	9	-0.015	-0.016	3.5109	0.743
ų.	l III	10	-0.000	0.000	3.5113	0.834
ф	10	11	0.050	0.050	11.502	0.175
ų.	l III	12	-0.003	-0.004	11.526	0.241
ų.	l III	13	-0.005	-0.005	11.606	0.312
¢.	l d	14	-0.040	-0.042	16.770	0.115
μ		15	-0.005	-0.004	16.841	0.156

Figure 22.4. GARCH(2,1) – FTSE 100

Square return correlogram

_

Correlogram of Standardized Residuals Squared

Date: 05/26/14 Time: 21:06 Sample: 1/08/2002 5/22/2014 Included observations: 3228 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
d	l l	1	-0.026	-0.026	2.1209	
ų.	l II	2	0.008	0.007	2.3206	0.128
φ	1	3	0.034	0.034	5.9530	0.051
φ		4	0.041	0.043	11.475	0.009
ψ	l II	5	0.002	0.004	11.486	0.022
ų.	•	6	0.015	0.014	12.228	0.032
ų –	•	7	-0.009	-0.011	12.490	0.052
ų.	•	8	-0.022	-0.024	13.998	0.051
1	1	9	0.006	0.003	14.105	0.079
ų.	•	10	-0.013	-0.013	14.618	0.102
ψ	1 1	11	0.037	0.039	19.175	0.038
ų.	(I	12	-0.024	-0.020	21.063	0.033
ψ	l II	13	0.002	0.002	21.083	0.049
III	•	14	-0.008	-0.008	21.269	0.068
ų	l h	15	-0.005	-0.008	21.359	0.093

Figure 22.5. GARCH(1,1) – FTSE MIB **Square return correlogram**

ų –	1	1	5	0.006	0.006	1.9877	0.738
•	'		6	0.024	0.024	3.9260	0.560
ų –	'	I	7	-0.001	-0.002	3.9297	0.686
ų –	'	I	8	0.006	0.006	4.0553	0.773
ų –	'	I	9	-0.006	-0.006	4.1624	0.842
ų –	1	I	10	-0.000	-0.000	4.1626	0.900
¢	1	1	11	-0.028	-0.028	6.7702	0.747
¢.	'	1	12	0.038	0.038	11.398	0.411
•		1	13	-0.009	-0.010	11.668	0.473
ų –	1	I	14	0.003	0.001	11.690	0.553
¢	1	þ	15	0.034	0.035	15.484	0.346

AC

PAC

1 0.018 0.018 1.0277 2 0.016 0.016 1.8661 0.172 3 -0.001 -0.002 1.8690 0.393 4 0.000 -0.000 1.8691 0.600

Q-Stat Prob

Figure 22.6. GARCH(1,1) – NIKKEI 225 Square return correlogram

Correlogram of Standardized Residuals Squared

Date: 05/26/14 Time: 21:16 Sample: 1/07/2002 5/22/2014 Included observations: 3229 Q-statistic probabilities adjusted for 2 ARMA term(s)

1 -0.004 -0.004 0.0625 2 -0.007 -0.2120 -0.001 -0.2120 3 0.000 0.000 0.2125 0.64 4 -0.023 -0.023 1.9832 0.37 5 -0.022 -0.023 3.6211 0.30 6 0.006 0.005 3.7371 0.44 7 -0.004 -0.004 3.7905 0.58 8 -0.019 -0.020 4.9820 0.54 9 0.014 0.013 5.6176 0.58 10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85		-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
3 0.000 0.001 0.2125 0.64 4 -0.023 -0.023 1.9832 0.37 5 -0.022 -0.023 3.6211 0.30 6 0.006 0.005 3.7371 0.44 7 -0.004 -0.004 3.7905 0.58 8 -0.019 -0.020 4.9820 0.54 9 0.014 0.013 5.6176 0.58 10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	ll.		1 -0.004	-0.004	0.0625	
4 -0.023 -0.023 1.9832 0.37 5 -0.022 -0.023 3.6211 0.30 6 0.006 0.005 3.7371 0.44 7 -0.004 -0.004 3.7905 0.58 8 -0.019 -0.020 4.9820 0.54 9 0.014 0.013 5.6176 0.58 10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	u II	l n	2 -0.007	-0.007	0.2120	
5 -0.022 -0.023 3.6211 0.30 6 0.006 0.005 3.7371 0.44 7 -0.004 -0.004 3.7905 0.58 8 -0.019 -0.020 4.9820 0.54 9 0.014 0.013 5.6176 0.58 10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	ų.	ļ и	3 0.000	0.000	0.2125	0.645
6 0.006 0.005 3.7371 0.44 7 -0.004 -0.004 3.7905 0.58 8 -0.019 -0.020 4.9820 0.54 9 0.014 0.013 5.6176 0.58 10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	ų –		4 -0.023	-0.023	1.9832	0.371
7 -0.004 -0.004 3.7905 0.58 8 -0.019 -0.020 4.9820 0.54 9 0.014 0.013 5.6176 0.58 10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	ų –		5 -0.022	-0.023	3.6211	0.305
8 -0.019 -0.020 4.9820 0.54 9 0.014 0.013 5.6176 0.58 10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	ψ	ļ и	6 0.006	0.005	3.7371	0.443
9 0.014 0.013 5.6176 0.58 10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	ų.	ļ и	7 -0.004	-0.004	3.7905	0.580
10 -0.012 -0.013 6.1209 0.63 11 -0.005 -0.005 6.2072 0.71 11 2-0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	ų į		8 -0.019	-0.020	4.9820	0.546
11 -0.005 -0.005 6.2072 0.71 12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85))	II	9 0.014	0.013	5.6176	0.585
12 -0.007 -0.008 6.3667 0.78 13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	ų –		10 -0.012	-0.013	6.1209	0.634
13 0.007 0.006 6.5154 0.83 14 0.014 0.014 7.1192 0.85	u I	II	11 -0.005	-0.005	6.2072	0.719
14 0.014 0.014 7.1192 0.85	ų.	4	12 -0.007	-0.008	6.3667	0.784
	ψ	ļ и	13 0.007	0.006	6.5154	0.837
Interpretation (15) 15 -0.009 -0.010 7.3818 0.88	ų.	II	14 0.014	0.014	7.1192	0.850
	ų.	(15 -0.009	-0.010	7.3818	0.881

Correlogram of Standardized Residuals Squared

Date: 05/26/14 Time: 21:16 Sample: 1/04/2002 5/22/2014 Included observations: 3230 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
ψ		1 -0.005	-0.005	0.0809	
ψ	4	2 -0.002	-0.002	0.0995	0.752
¢.	(3 -0.016	-0.016	0.9395	0.625
ų.	1	4 -0.006	-0.006	1.0405	0.791
•		5 0.024	0.024	2.9309	0.569
¢.	•	6 -0.010	-0.010	3.2465	0.662
ψ	1	7 0.028	0.028	5.7434	0.453
¢.	•	8 -0.011	-0.010	6.1445	0.523
ψ	1	9 0.025	0.025	8.1345	0.420
ψ	1	10 0.028	0.028	10.652	0.300
ψ		11 -0.004	-0.004	10.715	0.380
ψ	1	12 0.029	0.028	13.359	0.271
ψ		13 -0.007	-0.005	13.531	0.332
ψ		14 0.002	0.000	13.542	0.407
ψ		15 -0.007	-0.006	13.702	0.472

Figure 22.7. EGARCH(1,1,1) – **SOFIX**

Figure 22.8. EGARCH(2,1,1) – S&P 500

Square return correlogram

Square return correlogram

_

Correlogram of Standardized Residuals Squared

Date: 05/26/14 Time: 21:06 Sample: 1/08/2002 5/22/2014 Included observations: 3228 Q-statistic probabilities adjusted for 1 ARMA term(s)

Partial Correlation

Autocorrelation

Heteroskedasticity Test: ARCH

F-statistic	3.241016	Prob. F(1,3227)	0.0719
Obs*R-squared	3.239771	Prob. Chi-Square(1)	0.0719

Test Equation: Dependent Variable: WGT_RESID^A2 Method: Least Squares Date: 05/26/14 Time: 20:19 Sample (adjusted): 1/07/2002 5/22/2014 Included observations: 3229 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	0.954169 0.031676	0.046342 0.017595	20.58956 1.800282	0.0000 0.0719
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001003 0.000694 2.442033 19244.29 -7463.703 3.241016 0.071909	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0.985390 2.442880 4.624158 4.627924 4.625507 2.000548

Heteroskedasticity Test: ARCH

_				
19	F-statistic	0.589139	Prob. F(1,3226)	0.4428
19	Obs*R-squared	0.589397	Prob. Chi-Square(1)	0.4427

Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/26/14 Time: 20:19 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID [^] 2(-1)	0.988545 0.013512	0.035278 0.017604	28.02154 0.767554	0.0000 0.4428
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000183 -0.000127 1.735961 9721.746 -6359.773 0.589139 0.442808	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	1.002081 1.735850 3.941619 3.945385 3.942969 1.999837

Figure 23.1. GARCH(1,1) – BET-C ARCH LM test results

Heteroskedasticity Test: ARCH

F-statistic	Prob. F(1,3225)	0.0848
Obs*R-squared	Prob. Chi-Square(1)	0.0847

Test Equation: Dependent Variable: WGT_RESID*2 Method: Least Squares Date: 05/26/14 Time: 20:58 Sample (adjusted): 1/09/2002 5/22/2014 Included observations: 3227 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	1.031723 -0.030347	0.036175 0.017601	28.52015 -1.724176	0.0000 0.0848
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000921 0.000611 1.794624 10386.68 -6465.050 2.972783 0.084772	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	1.001336 1.795173 4.008088 4.011856 4.009438 1.998385

Figure 23.3. GARCH(1,1) – DAX ARCH LM test results

Figure EGARCH(1,1,1) – BUX ARCH LM test results

Heteroskedasticity Test: ARCH

	4 Prob. F(1,3224) 0.4806 5 Prob. Chi-Square(1) 0.4804
--	--

Test Equation: Dependent Variable: WGT_RESID*2 Method: Least Squares Date: 05/26/14 Time: 20:58 Sample (adjusted): 1/10/2002 5/22/2014 Included observations: 3226 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	0.988086 0.012424	0.033862 0.017611	29.17963 0.705460	0.0000 0.4806
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000154 -0.000156 1.642344 8696.076 -6176.993 0.497674 0.480575	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	nt var terion ion n criter.	1.000518 1.642216 3.830746 3.834515 3.832097 2.000020

Figure 23.4. GARCH(2,1) – FTSE 100 ARCH LM test

Heteroskedasticity Test: ARCH				Heteroskedasticity Test	ARCH				
F-statistic Obs*R-squared	2.118539 2.118461	Prob. F(1,3225) 0.1456 Prob. Chi-Square(1) 0.1455			F-statistic Obs*R-squared	1.026956 1.027265	Prob. F(1,322 Prob. Chi-Squ		0.3110 0.3108
Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/26/14 Time: 21:08 Sample (adjusted): 1/09/2002 5/22/2014 Included observations: 3227 after adjustments				Test Equation: Dependent Variable: W Method: Least Squares Date: 05/26/14 Time: 2 Sample (adjusted): 1/09 Included observations:	- 1:08 9/2002 5/22/20				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	1.026002 -0.025621	0.036257 0.017603	28.29822 -1.455520	0.0000 0.1456	C WGT_RESID^2(-1)	0.981837 0.017846	0.035272 0.017611	27.83614 1.013388	0.0000 0.3110
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000656 0.000347 1.800484 10454.62 -6475.570 2.118539 0.145623	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.000376 1.800796 4.014608 4.018376 4.015958 1.999686	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000318 0.000008 1.736502 9724.787 -6358.807 1.026956 0.310951	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.999670 1.736509 3.942242 3.946009 3.943592 1.999584

Figure 23.5. GARCH(1,1) - FTSE MIBFigure 23.6. GARCH(1,1) - NIKKEI 225ARCH LM test resultsARCH LM test

	Heteroskedasticity Test: ARCH				
F-statistic 0.062340 Prob. F(1,3226) Obs*R-squared 0.062378 Prob. Chi-Square(1)	0.8029 0.8028	F-statistic Obs*R-squared		Prob. F(1,3227) Prob. Chi-Square(1)	0.7763 0.7762

Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/26/14 Time: 21:19 Sample (adjusted): 1/08/2002 5/22/2014 Included observations: 3228 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	1.019818 -0.004396	0.046139 0.017606	22.10341 -0.249681	0.0000 0.8029
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000019 -0.000291 2.416555 18839.00 -7427.537 0.062340 0.802850	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	1.015354 2.416204 4.603183 4.606949 4.604533 2.000021

Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 05/26/14 Time: 21:19 Sample (adjusted): 1/07/2002 5/22/2014 Included observations: 3229 after adjustments

b	Variable	Coefficient	Std. Error	t-Statistic	Prob.
00 29	C WGT_RESID^2(-1)	1.006402 -0.005003	0.036029 0.017604	27.93311 -0.284180	0.0000 0.7763
54 83 49 33 21	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000025 -0.000285 1.785357 10286.06 -6452.340 0.080758 0.776291	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion ın criter.	1.001391 1.785103 3.997733 4.001499 3.999082 1.999957

Figure 23.7. EGARCH(1,1,1) – SOFIX

Figure 23.8. EGARCH(2,1,1) – S&P 500 ARCH LM test

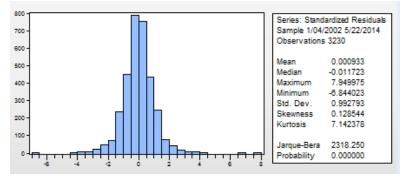


Figure 24.1. GARCH(1,1) – BET-C Histogram

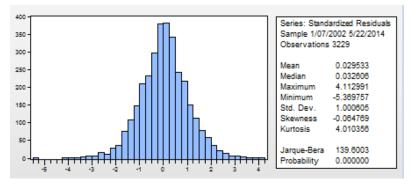


Figure 24.2. EGARCH(1,1,1) – BUX Histogram

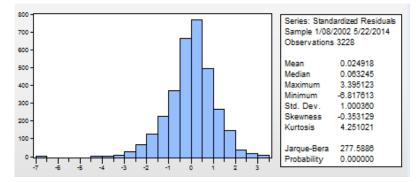


Figure 24.3. GARCH(1,1) – DAX Histogram

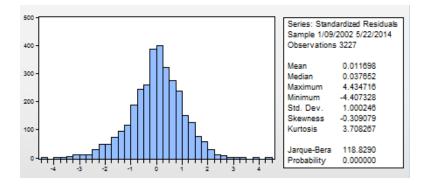


Figure 24.4. GARCH(2,1) – FTSE 100 Histogram

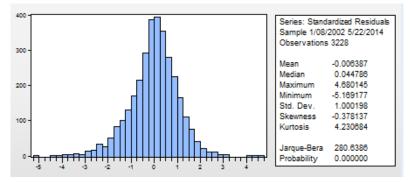


Figure 24.5. GARCH(1,1) – FTSE MIB Histogram

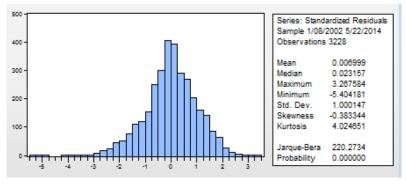


Figure 24.6. GARCH(1,1) – NIKKEI 225 Histogram

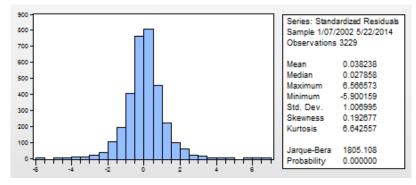


Figure 24.7. EGARCH(1,1,1) – SOFIX Histogram

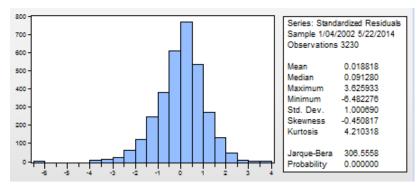


Figure 24.8. EGARCH(2,1,1) – S&P 500 Histogram

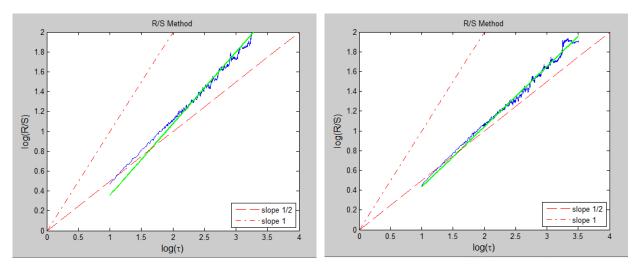


Figure 25.1. R/S analysis BET-C

Figure 25.2. R/S analysis BUX

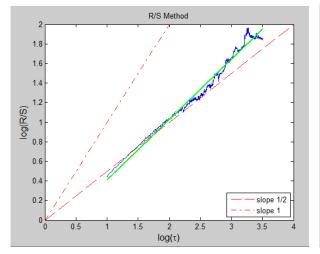


Figure 25.3. R/S analysis DAX

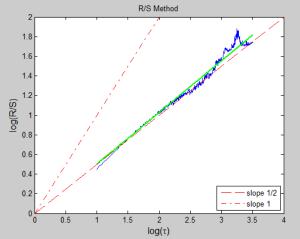


Figure 25.4. R/S analysis FTSE 100

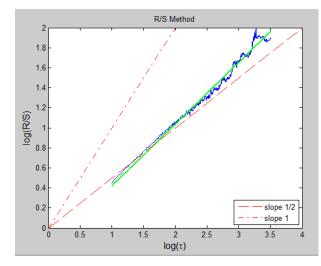


Figure 25.5. R/S analysis FTSE MIB

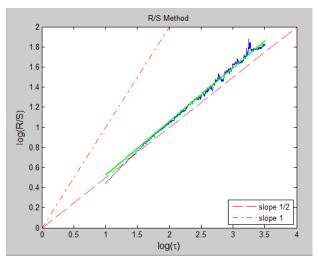


Figure 25.6. R/S analysis NIKKEI 225

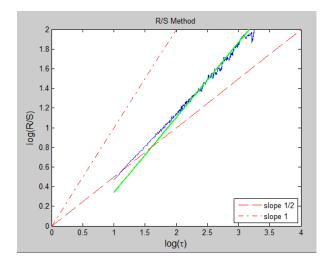
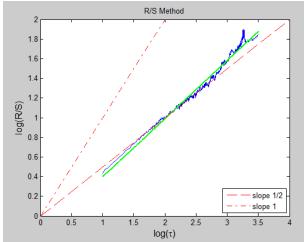
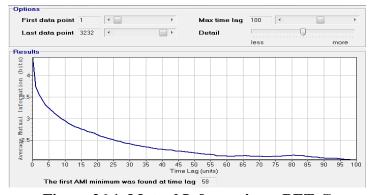
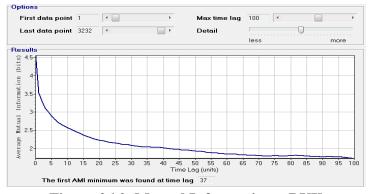
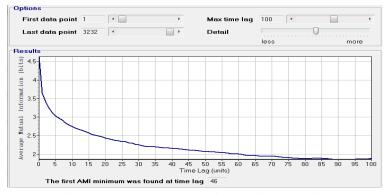
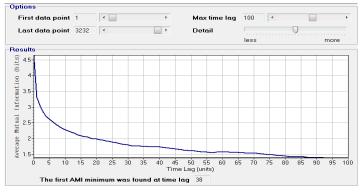
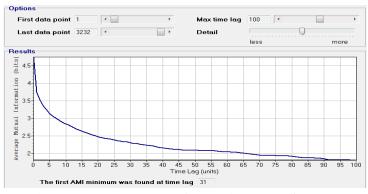


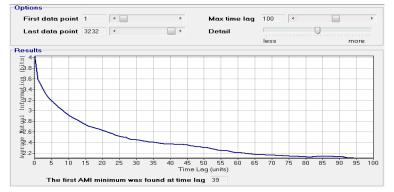
Figure 25.7. R/S analysis SOFIX

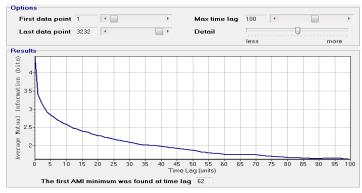





Figure 25.8. R/S analysis S&P 500








Figure 26.5. Mutual Information – FTSE MIB

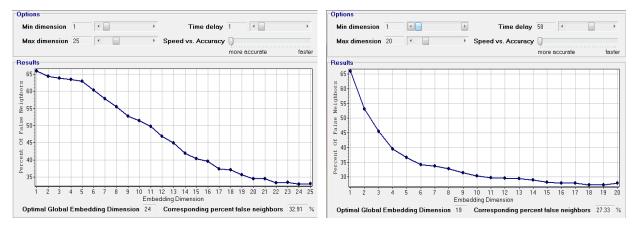


Figure 27.1. False Nearest Neighbors – BET-C (D=1 and D=58)

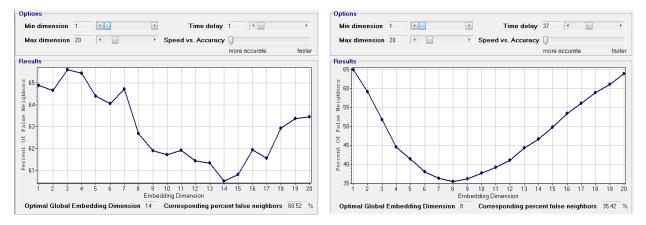


Figure 27.2. False Nearest Neighbors – BUX (D=1 and D=37)

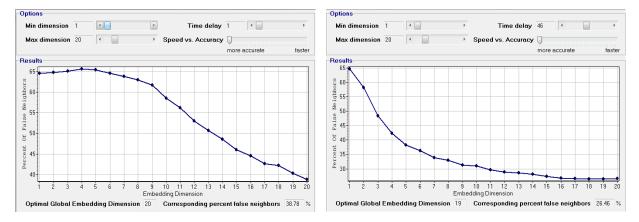


Figure 27.3. False Nearest Neighbors – DAX (D=1 and D=46)

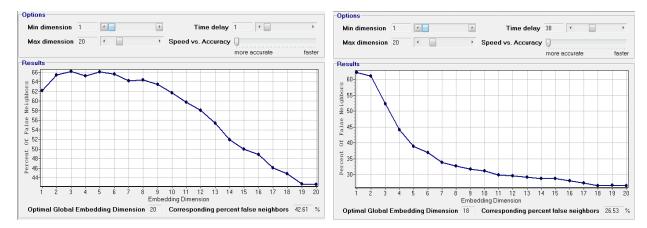


Figure 27.4. False Nearest Neighbors – FTSE 100 (D=1 and D=38)

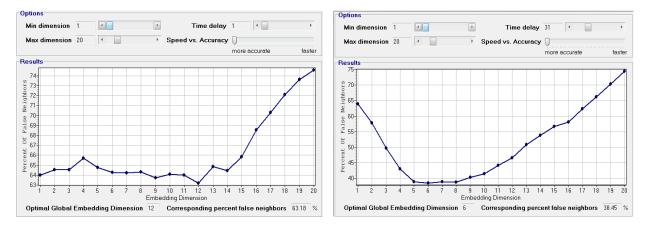


Figure 27.5. False Nearest Neighbors – FTSE MIB (D=1 and D=31)

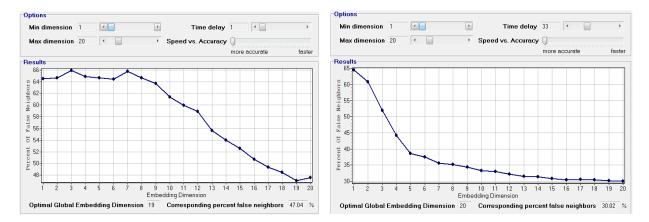


Figure 27.6. False Nearest Neighbors – NIKKEI (D=1 and D=33)

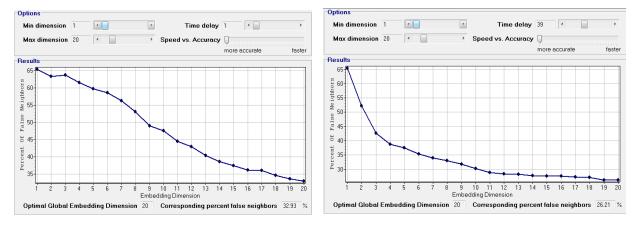
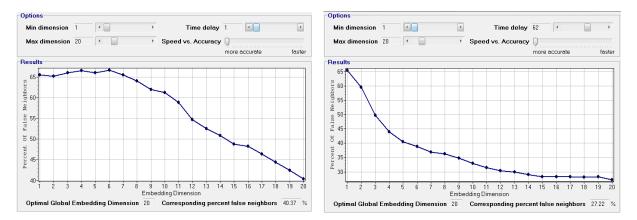
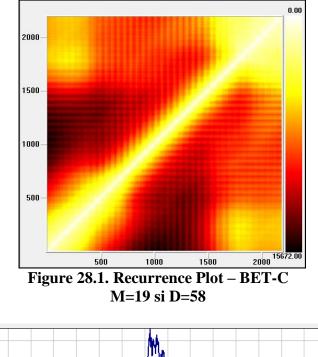
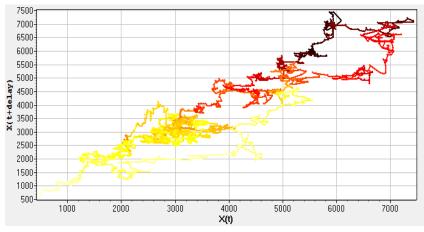
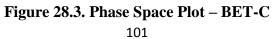
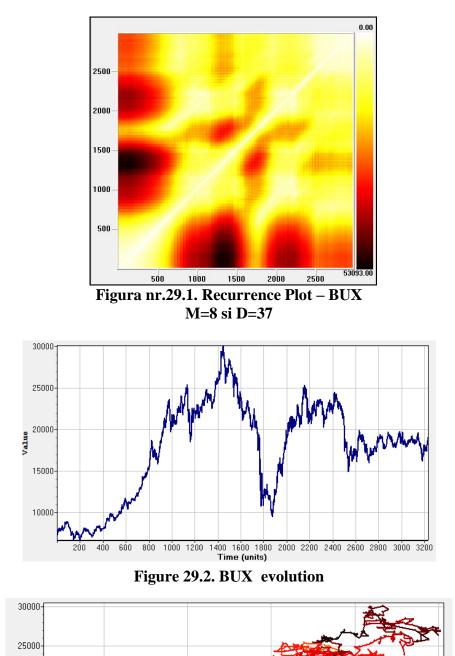
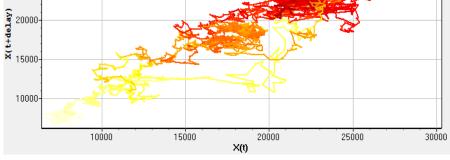


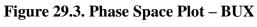
Figure 27.7. False Nearest Neighbors – SOFIX (D=1 and D=39)

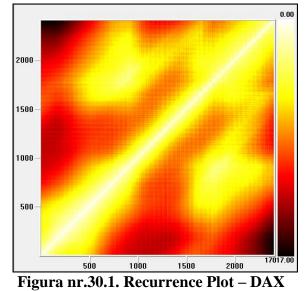




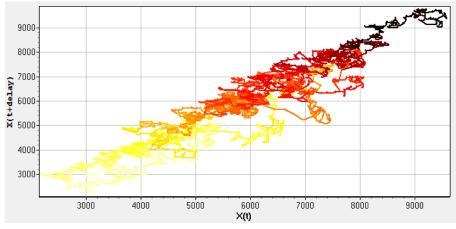

Figure 27.8. False Nearest Neighbors - S&P 500 (D=1 and D=62)

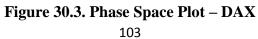












M=19 si D=46

Figure 30.2. DAX evolution

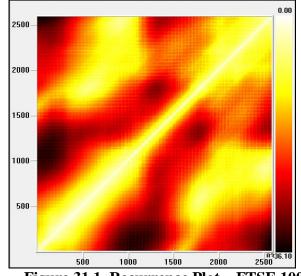
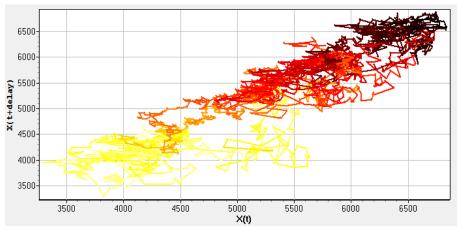
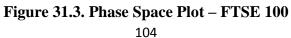




Figure 31.1. Recurrence Plot – FTSE 100 M=18 si D=38

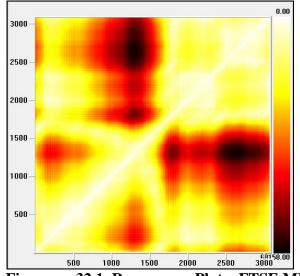


Figura nr.32.1. Recurrence Plot – FTSE MIB M=6 si D=31

Figure 32.2. FTSE MIB evolution

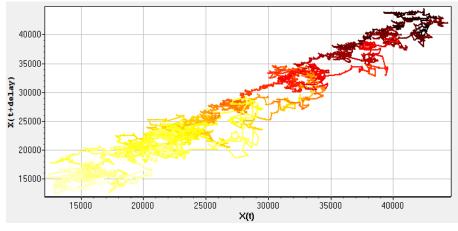
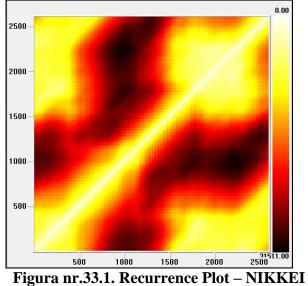



Figure 32.3. Phase Space Plot – FTSE MIB 105

M=20 si D=33

Figure 33.2. NIKKEI 225 evolution

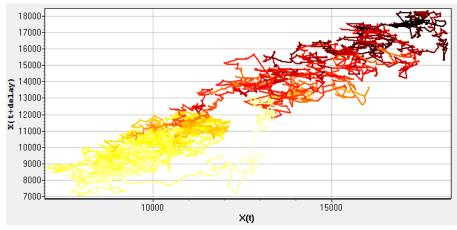
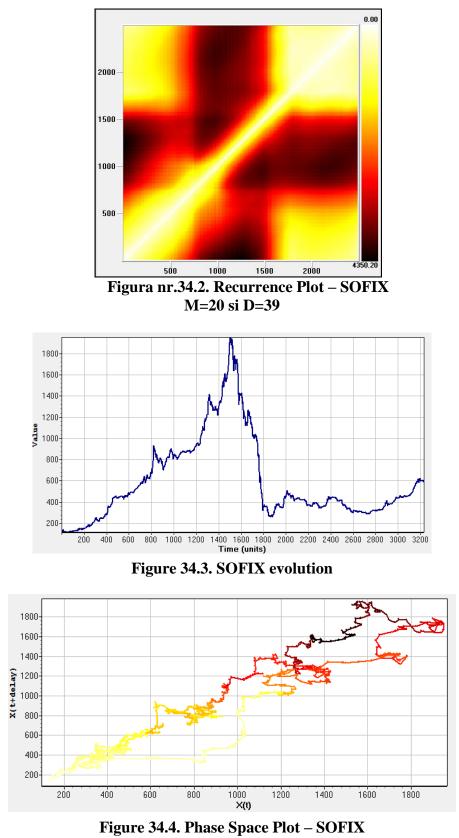



Figure 33.3. Phase Space Plot – NIKKEI 225 106

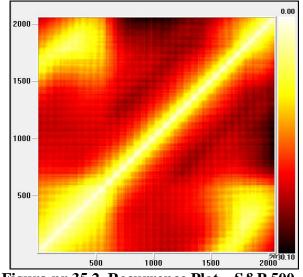


Figura nr.35.2. Recurrence Plot – S&P 500 M=20 si D=62



Figure 35.3. S&P 500 evolution

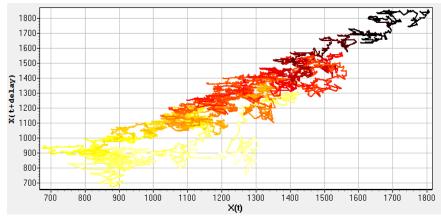


Figure 35.4. Phase Space Plot – S&P 500

Evolution				Distances		
First epoch start	1		4	Method	Euclidean	•
First epoch end	2188		- F	Rescaling	Maximum	•
Data Shift	0		F	Line	10	4
Epochs	1		ł	Radius	1.5	
Phase Space						
Dimension	19 🔹		۴	Delay	58	+
Mean StDev Me	anDist Recu	urrence Deter	m Laminarity Tra	p Time Ratio	Entropy MaxLine Tren	d All
					<u> == ; </u>	
Epoch number	1					
Start point	1					
Mean	3108.297					
Standard deviation	1788.443					
Mean rescaled dist	53.567					
Percent recurrence	0.090					
Percent determinism	n 36.174					
Percent laminarity	0.000					
Trapping Time	-1.000					
Ratio	400.878					
Entropy (bits)	3.038					
MaxLine	25					
Trend	-0.153					

Figure 36.1. RQA - BET-C

Evolution				Distances		
First epoch start	1		4	Method	Euclidean	•
First epoch end	2973		•	Rescaling	Maximum	•
Data Shift	0		+	Line	10 (+
Epochs	1		F	Radius	1.5	
Phase Space						
Dimension	8		Þ	Delay	37 <	Þ
Mean StDev Me	anDist Recu	rrence Determ	Laminarity Tra	p Time Ratio	Entropy MaxLine Trend All	
	andisi necu	nence Detenni	Lammanty 11a	p rime Hallo	Entropy MaxLine Trend 75	
Epoch number	1					
Start point	1					
Mean	17530.949					
Standard deviation	6000.125					
Mean rescaled dist	36.323					
Percent recurrence	0.159					
Percent determinism						
Percent laminarity	26.974					
Trapping Time	13.259					
Ratio	347.301					
Entropy (bits)	4.261					
MaxLine	562					
Trend	-0.198					

Figure 36.2. RQA – BUX

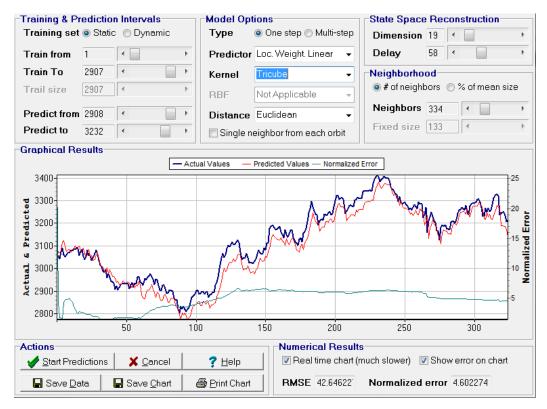
Evolution				-Distances			
First epoch start	1	•	Þ	Method	Euclide	an	•
First epoch end	2404	•	4	Rescaling	Maximu	Im	•
Data Shift	0	•	4	Line	10	•	4
Epochs	1	<	4	Radius	1.5		
Phase Space							
Dimension	19	•	۴	Delay	46	•	Þ
Epoch number Start point Mean Standard deviation Mean rescaled dist Percent recurrence	1 5246.14 1400.88 43.390 0.036						
Percent determinism Percent laminarity	1 41.858 0.000						
Trapping Time	-1.000						
Ratio	1158.08	0					
Entropy (bits) MaxLine	2.502 45	_					
Trend	-0.056						

Figure 36.3. RQA - DAX

Evolution				Distances		
First epoch start	1		۲	Method	Euclidean	•
First epoch end	2586 🔹		•	Rescaling	Maximum	•
Data Shift	0		+	Line	10 •	۴
Epochs	1		Þ	Radius	1.5	
Phase Space						
Dimension	18 🔹		۲	Delay	38 <	۴
Hann CiDau Har	Dist D	Datama La		- Tim - Deti-	Entropy MaxLine Trend All	
Mean StDev Mea	anDist Recu	urrence Determ La	aminarity Traj	o Time Ratio	Entropy MaxLine Trend All	
						_
Epoch number						
Start point	5131 503					
Mean	5171.527					
Standard deviation	797.902					
Mean rescaled dist	49.421					
Percent recurrence	0.007					
Percent determinism	4.310					
Percent laminarity	0.000					
Trapping Time	-1.000					
Ratio	620.988					
Entropy (bits)	0.000					
MaxLine	10					
Trend	-0.010					

Figure 36.4. RQA – FTSE 100

Evolution			Distances		
First epoch start	1	۲	Method	Euclidean	•
First epoch end	3077 🔍	4	Rescaling	Maximum	•
Data Shift	0	Þ.	Line	10	+
Epochs	1	4	Radius	1.5	
Phase Space					
Dimension	6	F.	Delay	31	۴
Mean StDev Me	anDist Recurrence	Determ Laminarity Tra	ap Time Ratio	Entropy MaxLine Trend All	
		, , ,			
Epoch number	1				
Start point	1				
Mean	26219.318				
Standard deviation	8275.176				
Mean rescaled dist	35.049				
Percent recurrence	0.195				
Percent determinism	39.701				
Percent laminarity	3.032				
Trapping Time	10.769				
Ratio	203.468				
Entropy (bits)	3.923				
MaxLine	600				
Trend	-0.234				


Figure 36.5. RQA – FTSE MIB

Evolution		Distances	
First epoch start	1 •	Method	Euclidean 🗸
First epoch end	2567 <	Rescaling	Maximum 👻
Data Shift	•	Line	10 🖌 🕨 🕨
Epochs	1 •	Radius	1.5
Phase Space			
Dimension	20 🖌 📄 🕨	Delay	33
Epoch number Start point Mean Standard deviation Mean rescaled dist Percent recurrence Percent determinism Percent laminarity Trapping Time	1 1 11759.728 2860.041 52.293 0.009 0.000 0.000 -1.000	Trap Time Ratio	Entropy MaxLine Trend All
Ratio Entropy (bits) MaxLine Trend	0.000 -1.000 -1 -0.013		
]			

Figure 36.6. RQA – NIKKEI 225 111

-Evolution					Distances		
First epoch start	1	•		•	Method	Euclidean	-
First epoch end	2434	•			Rescaling	Maximum	
-							•
Data Shift	0	•		+	Line	10	•
Epochs	1	+		F	Radius	1.5	
Phase Space							
Dimension	20	•		۲	Delay	39 🔹	•
Mean StDev M	eanDist F	Recurrence	Determ Lam	inarity Tra	ap Time Ratio	Entropy MaxLine Trend All	
	11						
Epoch number Start point	1						
Mean	660.45	58					
Standard deviation	432.70						
Mean rescaled dist							
Percent recurrence	0.372	,					
Percent determinisr							
Percent laminarity	50.340						
Trapping Time	12.674						
Ratio	195.80						
Entropy (bits)	4.643	,					
MaxLine	762						
Trend	-0.566						
,							
			Figure.30	6.7. RQ	A – SOFIX	K	
Evolution			U	-			
Evolution					Distances	(-	
First epoch start	1	•		4	Method	Euclidean	•
First epoch end	2054	•		•	Rescaling	Maximum	•
Data Shift	0	•		4	Line	10	Þ
Epochs	1	•		۴	Radius	1.5	
Phase Space							
Dimension	20	•		۴	Delay	62 <	Þ
Mean StDev M	eanDist F	Recurrence	Determ Lam	iinarity Tra	ap Time Ratio	Entropy MaxLine Trend All	
Epoch number	1						
Epoch nambor	11						
Start point	1						
	1	142					
Start point	1 1157.4 200.12						
Start point Mean	1 1157.4 200.12	21					
Start point Mean Standard deviation	1 1157.4 200.12	21					
Start point Mean Standard deviation Mean rescaled dist	1 1157.4 200.12 55.588 0.001	21					
Start point Mean Standard deviation Mean rescaled dist Percent recurrence	1 1157.4 200.12 55.588 0.001	21					
Start point Mean Standard deviation Mean rescaled dist Percent recurrence Percent determinisr	1 1157.4 200.12 55.588 0.001 n 0.000	21					
Start point Mean Standard deviation Mean rescaled dist Percent recurrence Percent determinisr Percent laminarity	1 1157.4 200.12 55.588 0.001 n 0.000 0.000	21					
Start point Mean Standard deviation Mean rescaled dist Percent recurrence Percent determinisr Percent laminarity Trapping Time	1 1157.4 200.12 55.588 0.001 n 0.000 0.000 -1.000	21					
Start point Mean Standard deviation Mean rescaled dist Percent recurrence Percent determinisr Percent laminarity Trapping Time Ratio	1 1157.4 200.12 55.588 0.001 n 0.000 0.000 -1.000 0.000	21					
Start point Mean Standard deviation Mean rescaled dist Percent recurrence Percent determinisr Percent laminarity Trapping Time Ratio Entropy (bits)	1 200.12 55.588 0.001 n 0.000 0.000 -1.000 0.000 -1.000 -1.000	3					

Figure 36.8. RQA – S&P 500

Figure 37.1. Prediction - BET-C

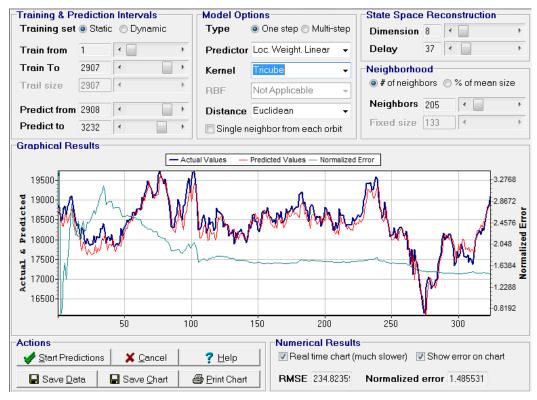


Figure 37.2. Prediction – BUX

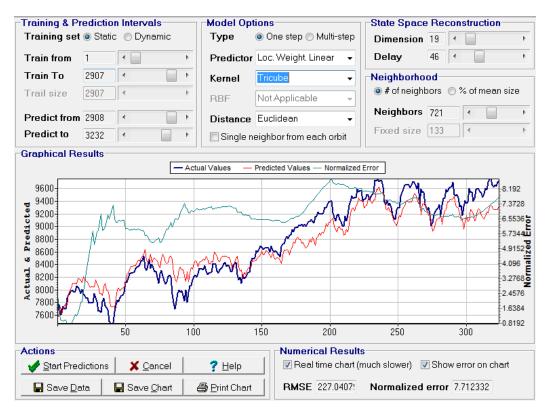


Figure 37.3. Prediction - DAX

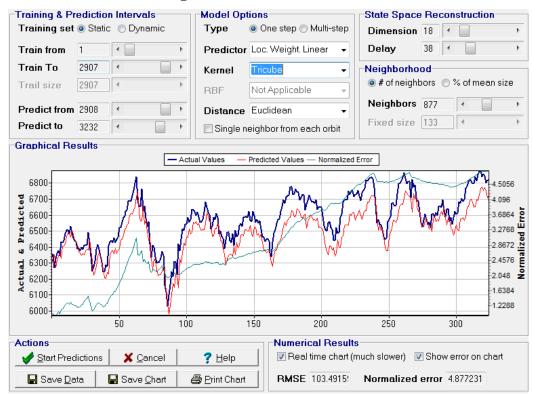


Figure 37.4. Prediction – FTSE 100

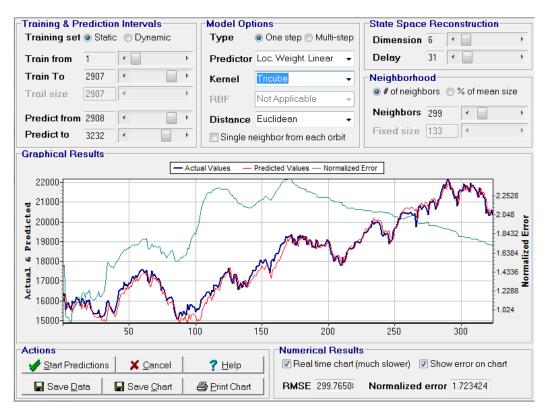


Figure 37.5. Prediction – FTSE MIB

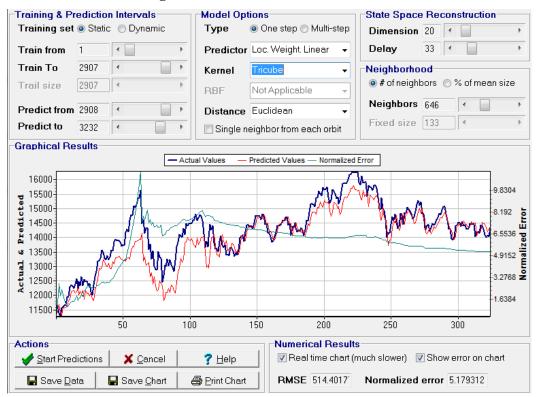
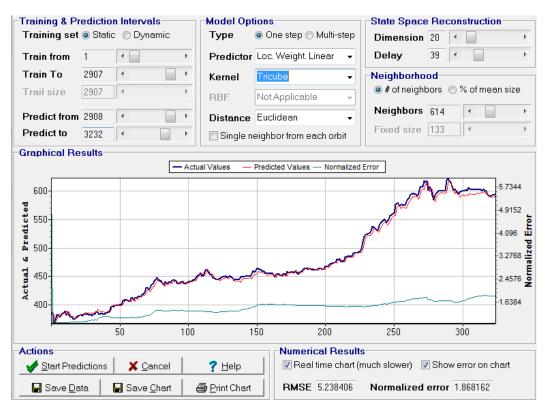



Figure 37.6. Prediction – NIKKEI 225

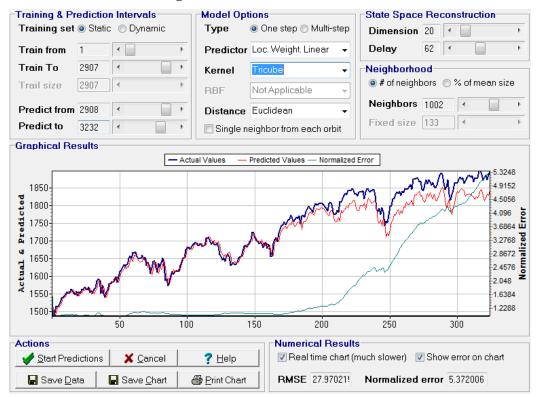


Figure 37.8. Prediction – S&P 500