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1. Motivation

• Investors, traders, and everyone that manages risk on the bond market are depending on modelling the
term structure of yields for hedging, valuation and strategy building.

• The long-term interest rates reflect the expectations for the evolution of the future interest rates on the
short-term. This assumes that they include information about the future state of the economy.

• In developed states, central banks use the yield curve as a transmission mechanism for the monetary policy,
trying to influence it, not only to utilize the information that it sends.

• The Romanian government bond market has made some progress in the last years: the depth of this
market, its liquidity and the average maturity of the new issued bonds have all increased comparing with the
status from ten years ago.



2. Obiectives

• To calibrate the yield curve from Romania and Germany, using the Nelson Siegel (NS) model with two
approaches:

- Two-Step method

- Maximum Likelihood (using the Kalman Filter)

• Analyze the results of the two approaches;

• Evaluate the performance of an out-of-sample forecast using NS on multiple time horizons (1 month, 6
months, 1 year) by comparing the results obtained with those generated by a Random Walk model.



3. Literature review

• Univariate models: Cox, Ingersoll and Ross (1985); Vasicek (1997); Hull & White (1990). Generally, this factor is considered the
short-term yield because despite the fact that in practice yields for different maturities are not perfectly correlated, the
correlation coefficient is high.

• Multivatiate models: Longstaff & Schwarts (1992), Chen (1994), Balduzzi et al. (1996) și Dai & Singleton (2000). These models
impose either the absence of arbitrage or specify a risk premium.

• Nelson Siegel is a model with three factors which has been proven it can calibrate the yield curve really well. Extensions with
four and five factors have been proposed by Svensson (1994) and Bjork & Christensen (1999). They have demonstrated that
these models forecast better compared with others (as the “Random Walk” model) on multiple time horizons.

• Christensen et al. (2011) proposed a free arbitrage model in extension of NS, that overpasses the difference between theory
and practice.

• Models have evolved even more in the last years by determining the existing correlations between the macroeconomic
indicators and the yield curve. A reference paper is that of And and Piazzesi (2003), in which they demonstrate that
introducing the inflation and the real activity from the economy in forecasting the evolution of the yield curve model is
useful, yet the effects are limited. These help explaining the short term and medium term movement of the yields
(maturities smaller than 1 year), but in mostly the yield movement on the long term is determined by unobservable
factors.



4. Methodology: Nelson Siegel and Diebold-Li extension

Nelson-Siegel (NS) equation:

𝑓t (τ) = b1t + b2t
1−𝑒−λ𝑡𝜏

λ𝑡𝜏
− b3t𝑒

−λ𝑡𝜏 (1)

Diebold-Li equation:

𝑦𝑡 τ = β1t + β2t
1−𝑒−λ𝑡𝜏

λ𝑡𝜏
+ β3t

1−𝑒−λ𝑡𝜏

λ𝑡𝜏
− 𝑒−λ𝑡𝜏 (2)

where: yt = yield to maturity (YTM); τ = maturitaty; βi = factors, i=1,2,3; λ = decay parameter

• Level (𝛃1t) is a proxy for 10Y yields and a measure of parallel shifts of the yield curve on all maturities.

• The short-term factor (𝛃2t) is closely related to the slope of the yield curve. An increase of β2t generates an increase of short-
term yields more than long-term yields, therefore the slope of the curve changes, it flattens. A decrease would lead to an 
increase of long end more than of short end of the curve; the yield curve therefore is steepening. 

• β3t measures the curvature of the term structure of interest rates and can be interpreted as a medium term factor.

• λt governs the exponential decay rate and where the loading on β3t achieves its maximum.



4. Methodology: Fitting the yield curve

By estimating the optimal parameters of the three factors, actually it is necessary to determine the minimum of the following 
function: 

min
λt,

β1t, β2t,β3t

 𝑖=1
𝑚 β1t + β2t

1−𝑒−λ𝑡𝜏𝑖

λ𝑡𝜏𝑖
+ β3t

1−𝑒−λ𝑡𝜏𝑖

λ𝑡𝜏𝑖
− 𝑒−λ𝑡𝜏𝑖 − 𝑦𝑡(𝜏i)

2

= (3)

= min
λt,

βt

𝑋λ𝑡
𝛽𝑡 − 𝑦𝑡

𝑇
(𝑋λ𝑡

𝛽𝑡 − 𝑦𝑡) (4)

In order to estimate the three latent factors and λ, in the financial literature are used two approaches: 

• Two-Step Method – Diebold-Li (2006);
• Maximum Likelihood Method (using the Kalman filter) – Diebold et al (2006).



4. Methodology: Two-Step Method

Nelson Siegel model is nonlinear and to make easier the estimations, the shape parameter λt is set a priori: 

max
λ

1−𝑒−λ
τ

λ τ

− 𝑒−λ τ (5)

Therefore, the problem becomes simple, linear, and factors can be estimated on each month, using Ordinary Least Square Method. 

On the second step, the parameters’ dynamic is estimated using an autoregressive vector VAR(1), resulting a forecasting of the 
curve. 

ŷt+h/t 𝜏 =  𝛽1,t+h/t +  𝛽2,t+h/t
1−𝑒−λ

τ

λ τ

+  𝛽3,t+h/t
1−𝑒−λ

τ

λ τ

− 𝑒−λ τ (6)

where (7) 𝛽t+h/t =  𝑐 +  Γ  𝛽𝑡



4. Methodology: Maximum Likelihood Method

Using the Kalman filter is constructed the likelihood function, which is maximized in order to obtain the estimated parameters.

The state space model (ssm):

1. Transition equation:

𝐿𝑡 − 𝜇𝐿

𝑆𝑡 − 𝜇𝑆

𝐶𝑡 − 𝜇𝐶

=

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝐿𝑡−1 − 𝜇𝐿

𝑆𝑡−1 − 𝜇𝑆

𝐶𝑡−1 − 𝜇𝐶

+

𝜂𝑡(𝐿)
𝜂𝑡(𝑆)
𝜂𝑡(𝐶)

(8)

t = 1,...,T; Lt, = level;  St = slope; Ct  = curvature

1. Measurement equation: 

𝑦𝑡 𝜏1

𝑦𝑡 𝜏2

⋮
𝑦𝑡 𝜏𝑚

=
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1
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λ𝑡𝜏𝑁
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𝐿𝑡

𝑆𝑡

𝐶𝑡

+

𝑒𝑡(𝜏1)
𝑒𝑡(𝜏2)

⋮
𝑒𝑡(𝜏𝑁)

(9)

As matrix / vector notation, the state space system can be written as follows:
𝑓𝑡 − 𝜇 = 𝐴 𝑓𝑡−1 − 𝜇 + 𝜂𝑡 (10)

𝑦𝑡 = Ʌ 𝑓𝑡 + 𝑒𝑡 (11)



4. Methodology: MLE – Kalman filter hypothesis

We assume that white noise residuals of the transition equation (𝜂𝑡) and the measurement disturbances (𝜀𝑡) are orthogonal to each

other and to the initial state:
𝜂𝑡

𝑒𝑡
~ 𝑊𝑁

0
0

𝑄 0
0 𝐻

, 𝐸 𝑓0 𝜂𝑡
′ = 0, 𝐸 𝑓0 𝑒𝑡

′ = 0.

In addition, the covariance matrix of vectors 𝜂𝑡 and Q is non-diagonal (𝜂𝑡 errors – shocks apply to factors – can be correlated), and the 
covariance matrix of 𝑒𝑡, H, is diagonal (deviations of yields at different maturities are not correlated), in this way reducing the number of 
parameters of the model. 
To solve the abose system I used Matlab 2015a software, with the toolbox Econometrics Toolbox™:

State equation: 𝑥𝑡 = 𝐴𝑡 𝑥𝑡−1 + 𝐵𝑡 𝑢𝑡

Measurement equation: 𝑦𝑡 = 𝐶𝑡 𝑥𝑡 + 𝐷𝑡 𝜀𝑡

• cov (𝑢𝑡, 𝜀𝑡) = 0, 𝑢𝑡~ N(0,𝜎𝑢
2) , 𝜀𝑡~ N(0,𝜎𝜀

2);
• 𝐴𝑡 = state matrix
• 𝐵𝑡 = state disturbance loading
• 𝐶𝑡 = measurement sensitivity
• 𝐷𝑡 = observation inovation matrix

Creating SSM model requires to set the initial matrixes by mapping results from VAR(1) model with Two Steps Diebold-Li : 
• Matrix A from SSM model is asumed to be the tridemensional coefficient matrix of the VAR(1) model; 
• Matrix B is the lower Cholesky factor of Q of the residual covariance matrix from VAR(1) model: Q=BB’;
• Matrix D is the root square of the diagonal elements of the covariance matrix of residuals of VAR(1) model: H=DD’;
• Matrix C results after solving the model because is not set a prori; 
• λ is set as the value chosen in the Two Steps Model.



5. Data analysis

• Monthly average bid-ask yields (average yield on each month) for
Romanian Government bond, starting with 31st of January 2011 until 30th

of April 2015.
• 5 maturities (6M, 1Y, 3Y, 5Y and 10Y) si 52 monthly observations;

Fig 1. Romanian yield curve during 01.2011 – 04.2015, monthly data, with 6, 12, 36, 60

and 120 months maturities

Table 1. Descriptive statistics of the yield curve presented for monthly yields related to the
available maturities.

Tabel 2. Descriptive statistics that present information regarding the level, slope and curvature,

being defined as: level = 10y yield (120m); slope=10y-6m; curvature=2*2y-6m-10y. Indicators

presented are: mean, standard deviation, minimum and maximum yields and autocorrelation

coefficients of lag 1, 12 and 30.  ρ 𝑘 =
 𝑡=𝑘+1

𝑛 𝑦𝑡−  𝑦 𝑦𝑡−𝑘−  𝑦

 1
𝑛 𝑦𝑡−  𝑦 2

Based on results obtained above, I identified the following stylized facts that 
can be applied also on the Romanian market:
• The average curve is positive. Thus, the longer the maturity of yields, the

bigger is the average yield because the investor receives a premium for
the undertaken risk;

• The yield curve takes a variety of shapes along the period analyzed:
positive, flatten (when the slope and curvature are close to 0) and
humped;

• Yield’s dynamics is persistent (the autocorrelation coefficient of lag 1M is
0.9439), while spread’s dynamics is less persistent ( ρ(1) of the slope is
slightly smaller, 0.9078);

• Long-term yields are less volatile than the short ones (standard deviation
from the average lower as the maturity increases – from 1.37% to
0.53%).

• Increasing market liquidity and international visibility by including
various bond series in global bond indexes (JP Morgan and Barclays), as
well as upgrading the Romanian bonds rating to investment grade (BBB-)
lead to an increase in the exposure of nonresidents by the end of 2012.

As a result, the price of bonds increased and the yields lowered.



6. Empirical results: Fitting the Romanian yield curve through the Two-Step Method

λ = 0.0597761 for τ = 2.5 years (30 months) maturity
λ is obtained by numerical optimization: http://www.wolframalpha.com/

The model becomes linear and by applying OLS are estimated {  𝛽1𝑡,  𝛽2𝑡,
 𝛽3𝑡}

Fig 2. Decomposition of the yield curve, thus of the loadings on the three 

factors, β1t, β2t and β3t: 1, 
1−𝑒−λ

t τ

λt τ

and 
1−𝑒−λ

t τ

λt τ

− 𝑒−λt τ .

Fig 3. Estimated vs. actual level, slope and curvature.

• Level = 10y maturity yield;
• Slope = 10y yield – 6m yield;
• Curvature = 2 * 2y yield – 10 y yield – 6m yield;

Correlation between actual vs estimated: 0.9783, -0.9959, 0.9633 

http://www.wolframalpha.com/


6. Empirical results: Fitting the Romanian yield curve through the Two-Step Method

Fig 4. Fitted yield curves at various moments in time. Dots are the actual yields from the markets. 

Fig 5. Residuals plot representation



Generally, to stationarize time series is applied the first differentiation operator and the logaritm operator. In our case, parameters are
associated with yields and is not indicated to apply any of them. As in Diebold and Li model (2006), two of three parameters are non-
stationary. Therefore, I will continue to use the same time series.

On the second step of the model, factors are forecasted using a autoregressive vector VAR(1). In order to use the results at this step 
also in Kalman filter, where we work with mean adjusted factors, I will include also a constant, which is considered the mean of each 
parameter.

ŷt+h/t 𝜏 =  𝛽1,t+h/t +  𝛽2,t+h/t
1−𝑒−λ

τ

λ τ

+  𝛽3,t+h/t
1−𝑒−λ

τ

λ τ

− 𝑒−λ τ (12)

 𝛽t+h/t =  𝑐 +  Γ  𝛽𝑡 (13)

Before making the forecast, it is necessary to perform an additional analysis of parameters, to test the stationarity using Augmented

Dickey-Fuller (ADF) – Eviews 7

By obtaining ADF statistics of -1.3051, -0.2027 and -0.9981 while the critical values related to the confidence levels of 1%, 5% and 10%
are -2.6610, -1.9473, -1.6127, the null hypotesis cannot be rejected. Therefore, factors may have unit roots.

6. Empirical results: Fitting the Romanian yield curve through the Two-Step Method



The parameter vector is composed by: the transition matrix A that has 9 parameters; μ vector with the average of the three dynamic
factors; Ʌ matrix – just λ; the residual covariance matrix Q of the transition equation (6 parameters); the residual covariance matrix H of
yields on each maturity (5 parameters, being a diagonal matrix).
Therefore, the vector is composed by 24 parameters that will be numerical optimized through Kalman filter. The big number of
parameters while having available just 5 maturities and 52 observations, most probably will make difficult the estimations.

Table 4. Comparison of innovation covariance estimate through SSM

model with the covariance matrix obtained in the VAR(1)

Results obtained by using SSM vs. Two-Step method

6. Empirical results: Fitting the Romanian yield curve using Kalman filter

Table 3. Comparison of transition matrix A from SSM

model with the coefficient matrix obtained from VAR(1)

model.



6. Empirical results: Fitting the Romanian Yield Curve

Estimated λ is 0.0403,
which corresponds to a
maturity of τ = 44 months
(3.6 years), where the
loading of the curvature is
maximum.

Results obtained by using SSM vs. Two-Step method

Fig. 7. Evolution of level, slope, and curvature using the Two Step method and the SSM

Fig. 6. Loading of curvature computed by setting λ at 0.597 in the Two-

Step approach and by estimation with Kalman filter.

Table 5. Average errors and standard deviations of estimated

yields resulted in Two Step approach and SSM

SSM model, even if

it does not have always the

best performance on each

maturity, offers a better

calibration on short

maturities (6M) and long

maturities (5Y and 10Y).



• Monthly average bid-ask yields extracted from Thomson Reuters;
• Period analyzed is 31.05.2005 – 31.05.2015;
• 121 observations; 12 maturities: 3, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 months;
• The bond market in GE is by far more developed that in RO and it is expected the NS to

perform much better

6. Empirical results: Fitting the German Yield Curve
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The evolution of German government bonds

3 6 12 24 36 48 60 72 84 96 108 120

Fig 8. The evolution of German government bonds of various maturities on the analyzed period on the Nelson 
Siegel model 

Fig 9. Yield curves fitted at various periods. Blue circles are actual yields from the
market.



Results obtained by using SSM vs. Two-Step method

Table 7. Comparison of innovation covariance estimate through SSM model with the

covariance matrix obtained in the VAR(1)

Table 6. Comparison of transition matrix A from SSM model with the coefficient matrix obtained from

VAR(1) model.

6. Empirical results: Fitting the German Yield Curve through Kalman filter

The vector of parameters has 31 components: the transition matrix A with 9 parameters; the vector μ with the averages of the

three factors; matrix Ʌ that has only λ; matrix Q of residuals covariance of the transition equation (6 parameters); matrix H of residual

covariance of estimated yields (12 parameters).

The dynamic of factors 𝐿𝑡, 𝑆𝑡and 𝐶𝑡 is persistent and covariances

between these factors and 𝐿𝑡−1, 𝑆𝑡−1and 𝐶𝑡−1 in MLE is 0.93, 0.98

and 0.98.

The cross-factor dynamics is insignificant.

As in Romania’s case, in the residuals covariance matrix obtained

in both approaches the volatility of shocks increases from 𝐿𝑡 to

𝐶𝑡.



6. Empirical results: Fitting the German Yield Curve

Results obtained by using SSM vs. Two-Step method

For Germany, the high number of available observations offsets the big number of parameters estimated by Kalman filter. Therefore,

except the short maturities (3 and 6 months), standard deviations of estimated errors are smaller than those resulted in the Two-Step

approaches.

Table 8. Errors average and standard deviations of estimated yields using

Two-Step approach and SSM



6. Empirical results: Nelson Siegel (NS) vs Random Walk (RW)

Random Walk:
Past changes of yields cannot be used to forecast future evolution because subsequent variations of yields are independent

𝑦𝑡 𝜏𝑖 = 𝑦𝑡−1 𝜏𝑖 + 𝜀𝑡 𝜏𝑖 ,           𝜀𝑡 𝜏𝑖 ~ N(0,𝜎2(𝜏𝑖)) (14)

AR(1):

ŷt+h/t 𝜏 =  𝛽1,t+h/t +  𝛽2,t+h/t
1−𝑒−λ

τ

λ τ

+  𝛽3,t+h/t
1−𝑒−λ

τ

λ τ

− 𝑒−λ τ (15)

where:  𝛽i,t+h/t =  𝑐𝑖 +  𝛾𝑖
 𝛽𝑡 , i=1, 2, 3

For both models, NS and RW, in the out−of−sample forecast I used as estimation subsample ¾ of the database, resulting ¼ of database used
as forecasted subsample:

RO – estimation period 31.01.2011 – 30.04.2014, forecasted period 30.05.2014 – 30.04.2015
GE − estimation period 31.05.2005 – 31.01.2012, forecasted period 29.02.2012 – 31.05.2015

Forecasted and compared horizons are 1m, 6m and 1y. RMSE for a horizon of h months between periods 𝑡1 and 𝑡2is computed as follows:

(16)𝑅𝑀𝑆𝐸𝑡1,𝑡2
=

1

𝑡2 − 𝑡1 + 1
 

𝑡=𝑡1

𝑡2

𝑦𝑡+ℎ
ℎ + 𝑦𝑡+ℎ|𝑡

ℎ 2



6M 

horizon

ROMANIA GERMANIA

NS RW NS RW

6 M 0.5091 0.4922 0.0150 0.1004

12 M 0.8083 0.6130 0.1446 0.0661

36 M 1.0829 1.1421 0.0202 0.2005

60 M 1.1959 1.0764 0.1224 0.2567

120 M 0.8658 0.8541 0.1544 0.3308

1M 

horizon

ROMANIA GERMANIA

NS RW NS RW

6 M 0.0311 0.0757 0.0243 0.0340

12 M 0.2952 0.1464 0.0928 0.0455

36 M 0.2348 0.3414 0.0131 0.3275

60 M 0.4560 0.3619 0.0772 0.7400

120 M 0.3706 0.3767 0.1524 1.7895

Table 9 Results of the out-of-sample forecasting using Nelson-Siegel (NS) and Random Walk (RW) for

government bonds in Romania and Germany for 1 month horizon. Maturities analyzed are 6, 12, 36,

60 and 120 months.

Table 10 Results of the out-of-sample forecasting using Nelson-Siegel (NS) and Random Walk (RW)

for government bonds in Romania and Germany for 6 months horizon. Maturities analyzed are 6, 12,

36, 60 and 120 months.

For 1M horizon, NS model applied on the Romanian

market offers a better performance on various maturities

(6m, 3y, 10y) compared to RW model, while for Germany NS

results are better on most of the selected maturities,

excepting 1Y tenor.

Regarding forecasting the YC on a horizon of 6M and

12M, RMSE is smaller for Romania only on the 3y maturity.

12M 

horizon

ROMANIA GERMANIA

NS RW NS RW

6 M 1.0405 0.9529 0.0303 0.0803

12 M 1.3085 1.0557 0.1539 0.0649

36 M 1.6753 1.6942 0.0237 0.2291

60 M 1.8585 1.7122 0.1316 0.2883

120 M 1.5144 1.4855 0.1582 0.3551

Table 11. Results of the out-of-sample forecasting using Nelson-Siegel (NS) and Random Walk (RW)

for government bonds in Romania and Germany for 12 months horizon. Maturities analyzed are 6,

12, 36, 60 and 120 months.

6. Empirical results: Nelson Siegel (NS) vs Random Walk (RW)



7. Conclusions

• Results of the yield curve fitting on the Romanian market are encouraging, in spite of the small number of maturities and
observations. On the other side, results on fitting the German yield curve are much better. These differences of performance were
expected due to discrepancies between the economic development of the two countries, including of course their financial markets.

• The three estimated dynamic parameters can be associated on both states with the level, slope and curvature, according to Diebold
and Li’s approach (2006), because they are highly corelated with the computed factors.

• Results obtained on the two aproaches of the NS model (the Two-Step and MLE) are similar, however more closely on Germany’s
case. Using MLE method is preferable because in the Two-Step method parameters used in the 2nd step does not take into account
the uncertainty of the estimations done in the first part, generating inefficient parameters estimations.

• On a 1M horizon, the NS model applied on the RO government bonds offers a better performance on various maturities (6m, 3y,
10y) comparing to RW, while for GE, results are better on most cases in the NS model, excepting 1y tenor. Regarding the forecast for
a horizon of 6m and 12m, RMSE is smaller for RO just on the 3y maturity.

• For GE bond market, the out-of-sample forecasting of the yield curve realized using the NS model is much closer to the actual yield
curve than using the RW model on almost all maturities, for all analyzed horizons. Obtaining a better performance on the German
market was expected taking into account its high development.

• In spite of the progress done by the RO bond market by increasing the depth and the liquidity and by attracting foreign investors, RO
has to make further and considerable progress in order to reach the level of GE.
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