Volatility Forecasting Models for CEE Stock Exchange Indices

MSc student Spătaru Marina Coordinator Professor Moisă Altăr

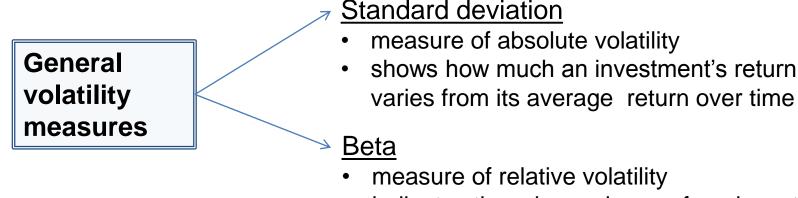
Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

2014

"Many investors think volatility is the same thing as risk, but it's not. Being risk-averse doesn't mean avoiding volatility. Don't fear the market's gyrations. Volatility is the best friend of the unemotional, patient, debt-free investor. A wildly fluctuating market means that solid businesses will occasionally be available for you to buy at irrationally low prices."

Warren Buffett

Contents


- Goals of the paper
- Volatility in economics
- Importance of volatility forecast
- Competing models
 - GARCH models
 - Stochastic Volatility models
- Data description
- Comparing GARCH models
- Comparing Stochastic Volatility models
- GARCH vs. Stochastic Volatility models backtesting results
- GARCH vs. Stochastic Volatility models out-of-sample volatility forecasts
- Concluding remarks
- Selected references

- To model and to forecast volatility using stochastic volatility models and GARCH models
- To analyze comparatively the predictive ability of these models
- To perform empirical exercises for five blue-chips indices from CEE capital markets, namely <u>BET</u> (Romania), <u>BUX</u> (Hungary), <u>BELEX15</u> (Serbia), <u>PX</u> (Czech Republic) and <u>WIG20</u> (Poland)
- To derive conclusions on the specific volatility of each market and their particular features

Volatility in economics

Definition: "<u>Volatility</u> is commonly allied to risk, in that it provides a measure of the possible variation or movement in a particular economic variable or some function of that variable."

Frank Knigh, "Risk, Uncertainty, and Profit", 1921

indicates the price variance of an investment compared to the market as a whole

General approach:

Higher expected returns can only occur with correspondingly higher risk (Portfolio Selection Theory developed by Markowitz and Capital Asset Pricing Model, developed by Sharpe)

Importance of volatility forecast

- Volatility risk is considered as one of the prime and hidden risk factors on capital markets
- Forecasting accurately future volatility is essential to
 - derivatives pricing
 - optimal asset allocation
 - portfolio risk management
 - dynamic hedging
 - input for Value-at-Risk models
- The importance of volatility forecasting was highlighted when in 2003 Professor R.F. Engle was awarded the Noble prize for his contribution in modeling volatility dynamics

Competing models

Main class of models that accommodate time-variation in variance:

GARCH models:

- Proposed by Bollerslev in 1986, based on the framework defined by Engle in 1982
- The conditional variance at time t is actually a function of three terms: i) the log-term average, ii) the news on past volatility measured by the ARCH term and iii) the previous conditional variance denoted by the GARCH term

Stochastic Volatility models:

- Introduced by Taylor in 1987
- The variance at time t is given by an unobserved variable that evolves accordingly to an autoregressive process

+ Very popular	- Large moves reduce the	+ Better out-of	 Less popular
+ Simple	forecasting performance (R. Reider, 2009)	sample forecasting	- More complicated
+ Fast	 Parameters resulted using different time scales give 	performance (Kim, Shephard,	- Non-linear
+ Linear	inconsistent results (M. Caporin, 2011)	Chib, 1998)	

GARCH models

General framework GARCH (p,q):									
$y_t = \mu + \varepsilon_t$,	for t = 1,T	(1)							
$y_t = \mu + \mathcal{E}_t,$ $z_t = z_t \sigma_t, \qquad z_t \sim N(0,1)$	for t = 1,T	(2)							
$\left[\sigma_{t}^{2} = \omega + \sum_{i=1}^{p} \alpha_{i} \mathcal{E}_{t-i}^{2} + \sum_{j=1}^{q} \beta_{j} \sigma_{t-j}^{2},\right]$	for t = 2,T	(3)							

Conditions:

1. $\alpha_i > 0$ and $\beta_j > 0$ – ensures the positivity of the volatility process

2. $\sum_{i=1}^{p} \alpha_i + \sum_{j=1}^{q} \beta_j < 1$ – avoids explosive variance and makes (3) stationary

Unconditional variance: var $(\varepsilon_t) = \frac{\omega}{1 - \sum_{i=1}^{p} \alpha_i - \sum_{j=1}^{q} \beta_j}$ Conditional variance: σ_t^2

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

2014

Alternative GARCH (p,q) models

1. z_t is Gaussian, $f(z_t) = \frac{1}{\sigma^2 \sqrt{\pi}} e^{-\frac{(\mathbf{Z}_t - \mu)^2}{2\sigma^2}}$, where μ is the mean and σ is the standard deviation of z_t

2. z_t follows a Student-t distribution, $f(z_t) = \frac{\Gamma(\frac{V+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{V}{2})} (1 + \frac{t^2}{\nu})^{-\frac{V+1}{2}}$, where ν is the number of degrees of freedom

3. z_t follows a GED, $f(z_t) = \frac{\beta}{2\alpha\Gamma(\frac{1}{\beta})} e^{-(|z_t-\mu|/\alpha)^{\beta}}$, where μ is the location, α is the scale and β is the shape

Standard Stochastic Volatility model (SV)

General framework:

$\int \mathbf{y}_{t} = \mathbf{\mu} + e^{\frac{1}{2}ht} \mathbf{\xi}_{t},$	ε _t ~ N (0,1)	for t = 1,T	(4)
$\int h_t = \mu_h + \phi_h (h_{t-1} - \mu_h) + \zeta_t$	ζ _t ~Ν (0,σ² _h)	for t = 2,T	(5)
ε, ζ, - i.i.d.			

Linearized framework:

$\int y_t^* = h_t + \mathcal{E}_t^*, \mathcal{E}_t^* s_t \sim N (\mu s_t - 1.2704, \sigma^2 s_t)$	for t = 1,T	(6)
$h_{t} = \mu_{h} + \phi_{h} (h_{t-1} - \mu_{h}) + \zeta_{t}, \qquad \zeta_{t} \sim N (0, \sigma_{h}^{2})$	for t = 2,T	(7)
$v_t^* = \log((y_t - \mu)^2 + c), \mathcal{E}_t^* = \log \mathcal{E}_t^2, s_t \in \{1, 2, 3, 4, 5, 6, 7\}$		
$\epsilon_t * \sim \log - \chi^2(1)$, but It can be estimated using a seven-compor	nent Gaussian mixture (Kim, S	hepherd,
Chib,1998)		

Condition:

 $\mathcal{E}_{t_{i}} \zeta_{t}$ - i.i.d.

 $|\phi_h| < 1 - \text{ensures that the AR}(1) \text{ process in (5) is stationary}$

Conditional variance: Var $(y_t / h_t) = e^{h_t}$

2014

Moving Average Stochastic Volatility Model (MASV)

General framework:

for
$$t = 1, ...T$$
 (8)

 $u_{t} = \xi_{t} + \psi_{1} \xi_{t-1} + ... + \psi_{q} \xi_{t-q}, \quad \xi_{t} \sim N(0, e^{h_{t}}) \quad \text{for } t = 1, ...T$ (9) $h_{t} = \mu_{h} + \phi_{h} (h_{t-1} - \mu_{h}) + \zeta_{t}, \quad \zeta_{t} \sim N(0, \sigma^{2}_{h}) \quad \text{for } t = 2, ...T$ (10) $\xi_{t}, \zeta_{t} - i.i.d.$

SV and MASV are nested: for $\psi_1 = \psi_2 = ... = \psi_q = 0$, MASV turns into SV

Conditions:

 $\gamma_t = \mu + u_t,$

- 1. $|\phi_h| < 1 \text{ensures that the AR(1) process in (10) is stationary}$
- 2. $\psi_p < 1$, $p = \overline{1, q}$ makes the MA(q) process in (9) invertible

Conditional variance: Var $(y_t | \mu, \psi, h) = e^{h_t} + \psi_1^2 e^{h_{t-1}} + \dots + \psi_q^2 e^{h_{t-q}}$ Conditional covariance: Cov $(y_t, y_{t-j} | \mu, \psi, h) = \begin{cases} \sum_{i=0}^{q-j} e^{h_{t-i}} \psi_i + j \psi_i, j = 1, \dots, q \\ 0, j > q \end{cases}$, $\psi = (\psi_{1,\dots,} \psi_q)', h = (h_1,\dots, h_T)'$

Estimation of the Stochastic Volatility Models

Initialization of the state: $h_1 \sim N(\mu_h, \sigma_h^2/(1-\varphi_h^2))$

Bayesian analysis: $p(h, \mu, \psi, \mu_h, \phi_h, \sigma^2_h | \mathbf{y}) = p(\mathbf{y} | \mathbf{h}, \mu, \psi, \mu_h, \phi_h, \sigma^2_h) p(\mathbf{h}, \mu, \psi, \mu_h, \phi_h, \sigma^2_h)$ Joint posterior distribution $p(\mathbf{h}, \mu, \psi, \mu_h, \phi_h, \sigma^2_h | \mathbf{y}) =$ Likelihood function $p(\mathbf{h}, \mu, \psi, \mu_h, \phi_h, \sigma^2_h | \mathbf{y}) =$ 1. $p(\mu | \mathbf{y}, \mathbf{h}, \psi, \mu_h, \phi_h, \sigma^2_h) = p(\mu | \mathbf{y}, \mathbf{h}, \psi);$ 2. $p(\mathbf{h} | \mathbf{y}, \mu, \psi, \mu_h, \phi_h, \sigma^2_h);$ Gibbs3. $p(\psi | \mathbf{y}, \mathbf{h}, \mu, \mu, \phi_h, \sigma^2_h) = p(\psi | \mathbf{y}, \mathbf{h}, \mu);$ 4. $p(\mu_h | \mathbf{y}, \mathbf{h}, \mu, \psi, \phi_h, \sigma^2_h) = p(\mu_h | \mathbf{h}, \phi_h, \sigma^2_h);$ 5. $p(\phi_h | \mathbf{y}, \mathbf{h}, \mu, \psi, \mu_h, \phi_h) = p(\sigma^2_h | \mathbf{h}, \mu_h, \phi_h)$

Evaluating the likelihood function

$$\mathbf{u}_{t} = \mathbf{E}_{t} + \mathbf{\psi}_{1} \mathbf{E}_{t-1} + \dots + \mathbf{\psi}_{q} \mathbf{E}_{t-q}, \mathbf{E}_{t} \sim \mathbf{N} (0, e^{h_{t}}) \implies \mathbf{u} = \mathbf{H}_{\psi} \mathbf{E}$$

$$\mathbf{H}_{\psi} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \psi_{1} & 1 & \vdots & 0 \\ \psi_{2} & \psi_{1} & \vdots & 0 \\ \vdots & \psi_{2} & \vdots & 0 \\ \psi_{q} & \vdots & \vdots & 0 \\ 0 & \psi_{q} & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \qquad |\mathbf{H}_{\psi}| = 1$$
(11)

$$\begin{aligned} \mathbf{u} &\sim \mathsf{N} \left(\mathbf{0}, \Sigma_{\mathbf{y}} \right) \\ \Sigma_{\mathbf{y}} = \mathbf{H}_{\psi} \mathbf{S}_{\mathbf{y}} \mathbf{H}_{\psi}', \qquad \mathbf{S}_{\mathbf{y}} = \mathsf{diag}(e^{h_1}, \dots, e^{h_T}), \qquad | \Sigma_{\mathbf{y}} | = | \mathbf{S}_{\mathbf{y}} | = \exp \left\{ \sum_{t=1}^T h_t \right\} \end{aligned}$$

$$(\mathbf{y} \mid \mu, \psi, \mathbf{h}) \sim N(\mu 1, \Sigma_{\mathbf{y}})$$

log p($\mathbf{y} \mid \mu, \psi, \mathbf{h}$) = $-\frac{T}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{T} h_t - \frac{1}{2} (\mathbf{y} - \mu 1)' \sum_{\mathbf{y}} (\mathbf{y} - \mu 1)$

Sampling the state

 $p(\mathbf{h} | \mathbf{y}, \boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\mu}_{h}, \boldsymbol{\phi}_{h}, \sigma^{2}_{h}) \propto p(\mathbf{y} | \mathbf{h}, \boldsymbol{\mu}, \boldsymbol{\psi}) p(\mathbf{h} | \boldsymbol{\mu}_{h}, \boldsymbol{\phi}_{h}, \sigma^{2}_{h}) = p(\mathbf{y}^{*} | \mathbf{h}, \mathbf{s}, \boldsymbol{\psi}) p(\mathbf{h} | \boldsymbol{\mu}_{h}, \boldsymbol{\phi}_{h}, \sigma^{2}_{h})$ 1. 2.

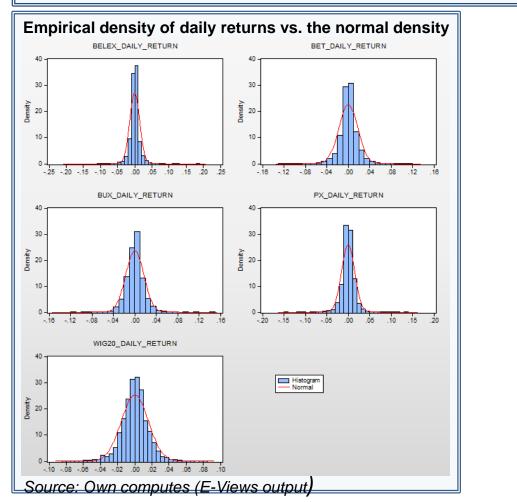
1. ln p(**y*** | **h**, s,
$$\psi$$
) = $-\frac{1}{2}$ (**y***- **h** - **d**)' Σ_{y*}^{-1} (**y***- **h** - **d**) +c1,
d=(μ_{s1} -1.2704,..., μ_{sT} -1.2704)', Σ_{y*} =diag(σ_{s1}^{2} ,..., σ_{sT}^{2})

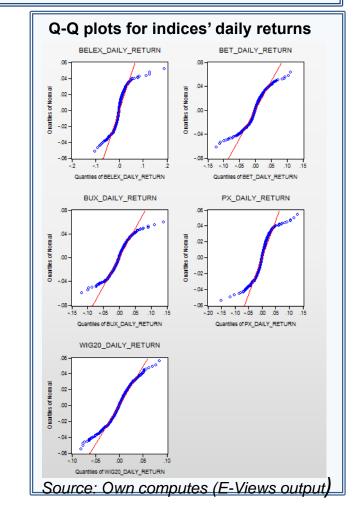
2.
$$\log p(\mathbf{h} | \mu_{h}, \phi_{h}, \sigma_{h}^{2}) = -\frac{1}{2}(\mathbf{h} - \mathbf{H}_{\phi h}^{-1} \widetilde{\boldsymbol{\alpha}})' \mathbf{H}_{\phi h}^{\prime} \Sigma_{\mathbf{h}}^{-1} \mathbf{H}_{\phi h} (\mathbf{h} - \mathbf{H}_{\phi h}^{-1} \widetilde{\boldsymbol{\alpha}}) + c2$$

 $\Sigma_{\mathbf{h}} = \operatorname{diag}(\sigma_{h}^{2} / (1 - \phi_{h}^{2}), \sigma_{h}^{2}, ..., \sigma_{h}^{2}), \widetilde{\boldsymbol{\alpha}} = \begin{pmatrix} \mu_{h} \\ (1 - \phi_{h})\mu_{h} \\ \vdots \\ (1 - \phi_{h})\mu_{h} \end{pmatrix}, \mathbf{H}_{\phi h} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ -\phi h & 1 & 0 & \cdots & 0 \\ 0 & -\phi h & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & -\phi h & 1 \end{pmatrix}.$

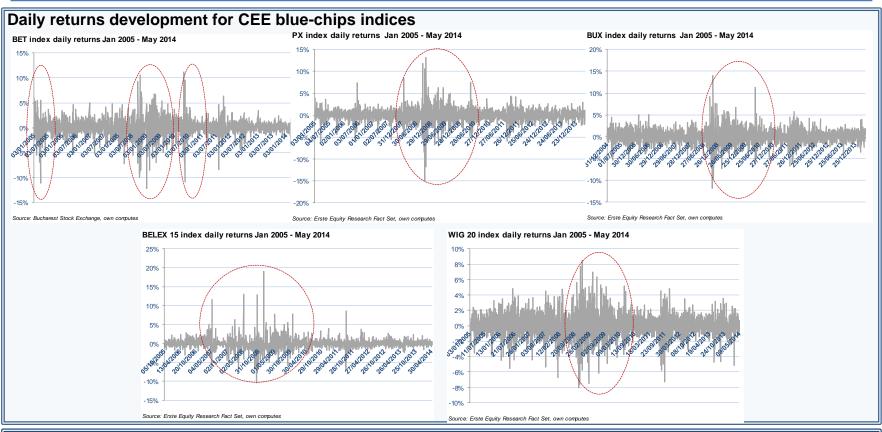
log p(h|y,
$$\mu$$
, ψ , μ_h , ϕ_{h} , σ_{h}^2) = $-\frac{1}{2}$ (h'K_h h - 2h K_h \hat{h}) + c3,
K_h = H_{\phih}' Σ_{h}^{-1} H_{\phih} + Σ_{y}^{*-1} and \hat{h} = K_h⁻¹ (H_{\phih}' $\Sigma_{h}^{-1} \widetilde{\alpha}$ + Σ_{y}^{*-1} (y* - d))

Data description


y_t = Daily returns of blue-chips indices from CEE stock exchanges = Index_t/Index_{t-1}-1


Index	Stock exchange	No. of stocks aggregated	Period	No. of observations	Source
BET	Bucharest Stock Exchange	10	Jan 3, 2005 – May 9, 2014	2,341	BSE
PX	Prague Stock Exchange	14	Jan 3, 2005 – May 9, 2014	2,436	Erste Equity Research Fact Set
BELEX15	Belgrad Stock Exchange	15	Oct 5, 2005 - May 9, 2014	2,216	Erste Equity Research Fact Set
BUX	Budapest Stock Exchange	up to 25	Jan 3, 2005 – May 9, 2014	2,433	Erste Equity Research Fact Set
WIG20	Warsaw Stock Exchange	20	Jan 3, 2005 – May 9, 2014	2,341	Erste Equity Research Fact Set

Indicator		Blu	ue-chips ind	ex	
	BET	PX	BELEX15	BUX	WIG20
Mean	0.000331	0.000108	0.999864	0.000228	0.000209
Maximum	0.111427	0.131609	0.18912	0.140854	0.084966
Minimum	-0.122929	-0.149435	-0.102923	-0.118817	-0.080962
Std. Dev.	0.017684	0.015417	0.014748	0.016905	0.015779
Skew ness	-0.372859	-0.165682	1.334625	0.142016	-0.184303
Kurtosis	9.813614	16.0382	27.07185	9.685639	5.819956
Jarque-Bera	4582.647	19351.51	54160.79	4542.126	788.919


Data features – Normal density test

Positive excess kurtosis confirms the usual leptokurtic distributions of stock prices' returns

Data features – Heteroskedasticity

Time series do not have constant variance over time => the need of modeling the data in a time-varying framework

Large volatility periods are roughly the same for all the five CEE markets considered (volatility clusters mostly overlap)

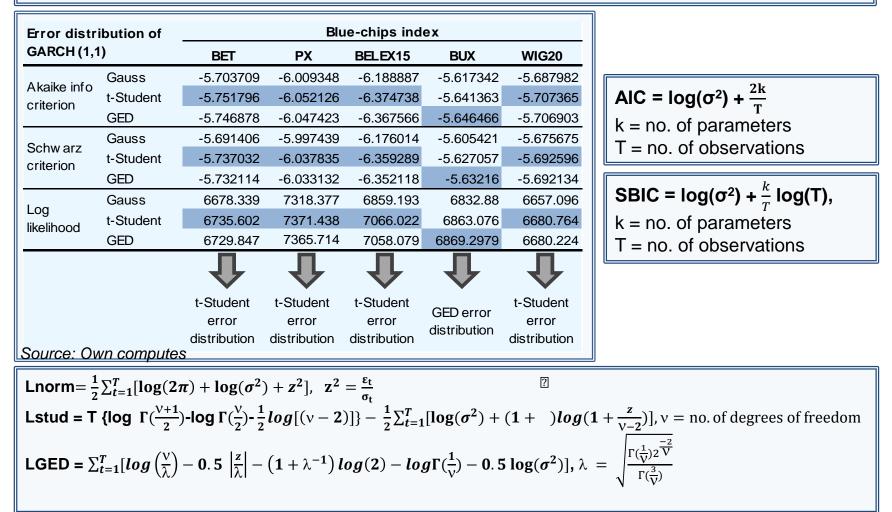
Data features – Serial independence test

Autocorrelation coefficients of daily returns

Correlogram of BET					_	Correlogra			RETURN					Correlogra		EX_DAILY_RETUR	:N				
Sample: 12/31/2004 Included observation	5/09/2014				:	Sample: 12 Included of	/31/200	4 5/09/201	14						2/31/2004	4 5/09/2014					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorr	elation	Partial	Correlation	AC	PAC	Q-Stat	Prob	Autocor	elation	Partial Correlati	on AG	2	PAC	Q-Stat	Prob
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	41 64 64 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	1 0.092 2 -0.010 - 3 -0.033 - 4 -0.020 - 5 0.037 6 -0.014 - 7 0.002 8 0.052 9 0.027 10 -0.004 - 11 0.037 12 0.006 13 0.028 14 0.046 15 0.053	-0.019 -0.030 -0.014 0.040 -0.023 0.005 0.053 0.018 -0.010 0.044 0.001 0.025 0.044	19.962 22.480 23.399 26.626 27.099 27.106 33.395 35.111 35.157 38.369 38.450 40.343 45.257	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					2 -0.07 3 -0.05 4 0.00 5 0.04 6 -0.03 7 -0.00 8 0.01 9 0.01 10 -0.03 11 -0.02 12 0.06 13 0.00 14 0.02	5 -0.08 7 -0.04 7 0.01 3 0.03 6 -0.04 6 0.00 7 0.01 2 0.00 0 -0.03 4 -0.01 0 0.05 4 -0.01 2 0.03	2 16.292 2 30.072 4 37.908 0 38.044 5 42.629 5 45.793 8 45.87 5 46.550 5 46.915 1 49.091 3 50.507 9 59.223 3 59.269 1 60.454 8 62.953	2 0.000 3 0.000 4 0.000 9 0.0000 9 0.00000 9 0.0000 9 0.0000 9 0.0000 9 0.0000 9 0.0000 9 0.0000 9 0.0000 9 0.00000 9 0.0000 9 0.0000 9 0.0000 9 0.0000 9 0.0000 9 0.00000 9 0.00000 9 0.00000 9 0.00000 9 0.000000 9 0.000000 9 0.00000000000000000000000000000000000				2 0. 3 0. 4 0. 5 -0. 6 0. 7 0. 8 0. 9 0. 10 0. 11 0. 12 0. 13 0. 14 0.	111 019 032 007 013 028 067 054 014 011 033 063 099	0.039 -0.022 0.031 -0.023 0.018 0.025 0.025 0.022 -0.016 0.007 0.029 0.050 0.073	167.06 194.41 195.25 197.57 197.68 198.06 199.78 209.85 216.38 216.84 217.12 219.52 228.27 250.33 272.76	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	C	orrelogram of E	BUX_D	AILY_RE	TURN				C	orrelogram	of WIG	20_DAILY	RETURN								
	S	ate: 05/29/14 ample: 12/31/2 ncluded observ:	2004 5	/09/2014					:	Date: 05/29/ Sample: 12/ ncluded obs	31/2004	5/09/2014	4								
	_	Autocorrelatio	on	Partial Co	orrelation	AC	PAC	Q-Stat	Prob	Autocorre	ation	Partial (Correlation	n AC	PAC	Q-Stat Prob					
	_					2 -0.08 3 -0.02 4 0.08 5 0.02 6 -0.06 7 -0.00 8 0.01 9 -0.02 10 -0.04 11 0.02	1 -0.085 3 -0.013 3 0.084 3 0.014 5 -0.055 5 0.009 4 -0.031 7 -0.034 4 -0.030 0 0.024	8.5513 24.704 25.971 44.932 46.819 57.027 57.109 57.586 59.309 64.072 65.074 67.125	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1) 			0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 -0.05 3 -0.00 4 -0.00 5 -0.00 6 -0.00 7 0.00 8 -0.03 9 0.01 10 0.01 11 -0.01	6 -0.057 3 0.002 2 -0.005 9 -0.009 6 -0.005 1 0.000 2 -0.033 9 0.022 5 0.009 5 -0.014	3.8009 0.051 11.063 0.004 11.086 0.011 11.093 0.026 11.271 0.046 11.343 0.078 11.345 0.124 13.797 0.087 14.619 0.102 15.147 0.127 15.702 0.155					

=>Up to lag 15 (at least), daily returns seem to be auto-correlated (confirmation of the volatility clustering phenomenon)

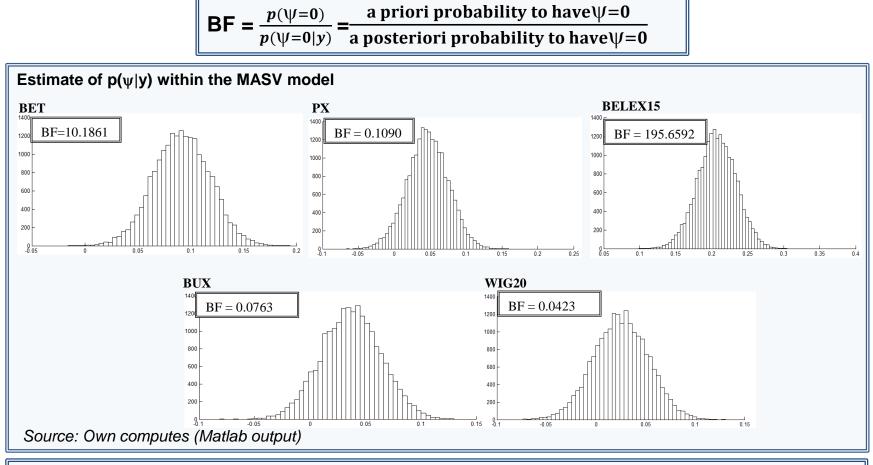
=>Exception: WIG20 for which auto-correlation is confirmed only up to lag 5


Data features – Stationarity tests

ADF and KPSS tests for stationarity Null Hypothesis: BET DAILY RETURN has a unit root Null Hypothesis: BET DAILY RETURN is stationary Exogenous: Constant Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=15) Bandwidth: 11 (Newey-West automatic) using Bartlett kernel t-Statistic Prob.* LM-Stat. Augmented Dickey-Fuller test statistic -44.20562 0.0001 Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.143856 Test critical values: -3.432949 Asymptotic critical values*: 0.739000 1% level 1% level 5% level -2.8625745% level 0.463000 10% level -2.567366 10% level 0.347000 Null Hypothesis: PX_DAILY_RETURN is stationary Null Hypothesis: PX_DAILY_RETURN has a unit root Exogenous: Constant Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=15) Bandwidth: 6 (Newey-West automatic) using Bartlett kernel LM-Stat. t-Statistic Prob.* Augmented Dickey-Fuller test statistic -36.33074 0.0000 Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.122681 Test critical values 1% level -3.432842 Asymptotic critical values*: 1% level 0.739000 5% level -2.862527 5% level 0.463000 10% level -2.56734110% level 0.347000 Null Hypothesis: BELEX_DAILY_RETURN has a unit root Null Hypothesis: BELEX_DAILY_RETURN is stationary Exogenous: Constant Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxiag=15) Bandwidth: 14 (Newey-West automatic) using Bartlett kernel t-Statistic Prob.* LM-Stat. Augmented Dickey-Fuller test statistic -35.50128 0.0000 Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.221117 Test critical values: 1% level -3.433106 Asymptotic critical values* 0.739000 1% level 5% level -2.8626430.463000 5% level -2.56740310% level 10% level 0.347000 Null Hypothesis: BUX_DAILY_RETURN has a unit root Null Hypothesis: BUX_DAILY_RETURN is stationary Exogenous: Constant Exogenous: Constant Lag Length: 3 (Automatic - based on SIC, maxlag=15) Bandwidth: 0 (Newey-West automatic) using Bartlett kernel t-Statistic Prob.* LM-Stat. Augmented Dickey-Fuller test statistic -23.43465 0.0000 Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.123634 0.739000 Test critical values: 1% level -3.432848 Asymptotic critical values*: 1% level 5% level -2.862529 5% level 0.463000 10% level -2.567342 10% level 0.347000 Null Hypothesis: WIG20 DAILY RETURN has a unit roct Null Hypothesis: WIG20_DAILY_RETURN is stationary Exogenous: Constant Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=15) Bandwidth: 14 (Newey-West automatic) using Bartlett kernel t-Statistic Prob.* LM-Stat. Augmented Dickey-Fuller test statistic -46.44174 0.0001 Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.122270 Test critical values: 1% level -3.432949Asymptotic critical values*: 1% level 0.739000 -2.8625745% level 5% level 0.463000 10% level -2.56736610% level 0.347000 Source: Own computes (E-Views output)

Augmented Dickey Fuller (ADF) and Kwiatokski-Phillips-Schmidts-Shin Unit Root (KPSS) tests have opposite null hypothesis, which strengthens the result that all the five data series are stationary

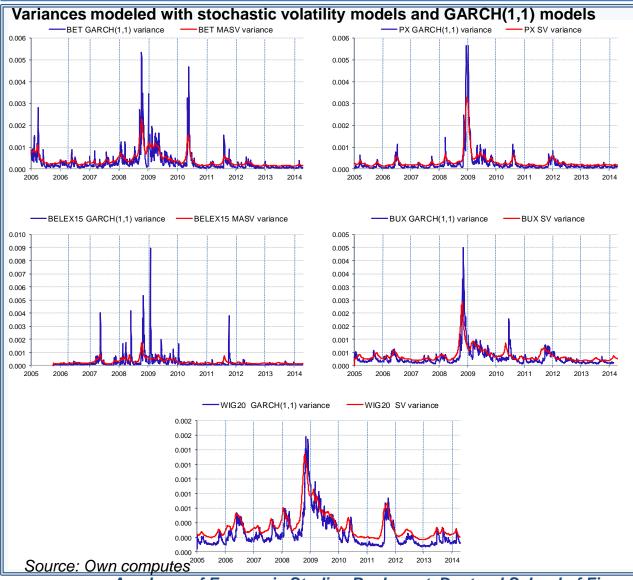
GARCH models comparison


Hansen P., Lunde A. (2004) => there is no significant evidence that higher-order GARCH outperforms GARCH(1,1) model

Academy of Economic Studies Bucharest, Doctoral School of Finance and Banking

Stochastic Volatility models comparison

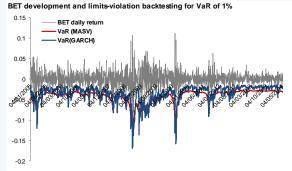
SV and MASV (q=1) are **nested models** => if ψ = 0, MASV becomes SV

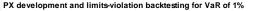


BET, BELEX 15 => MASV models PX, BUX, WIG20 => SV model

Parameters of the models

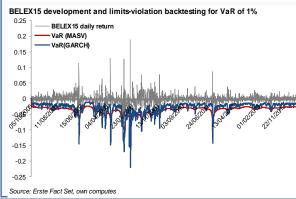
ВЕТ										
MASV	nostorior	posterior			GARCH(1,1), Student-t	Errors			
parameter	mean	stdev.	5%-tile	95%-tile	parameter	mean	stdev	5%-tile	95%-tile	
μ	0.0007 -7.7713	0.0004 0.1142	0.0001 -8.3034	0.0013 -7.1386	μ AR(1)	0.0006 0.0806	0.0002 0.0213	0.0001 0.0387	0.0011 0.1224	=> For all the five GARCH
μ _h Φ _h	0.9878	0.0052	0.9794	0.9971	• •	53.5×10^{-7}			78 x 10 ⁻⁷	models, $\alpha + \beta$ is below 1,
σ_h^2	0.0122	0.0024	0.0088	0.0168	α	0.1841	0.0215	0.1419	0.2263	
ψ	0.0916	0.0266	0.0482	0.1348	β	0.8125	0.0184	0.7765	0.8486	which means that there are
PX										no ovolocivo phonomono in
SV	posterior	posterior			GARCH(1,1), Student-t	Errors			no explosive phenomena in
parameter	mean	stdev.	5%-tile	95%-tile	parameter		stdev	5%-tile	95%-tile	the framework
μ	0.0005	0.0003	0.0001	0.0010	μ AR(2)	0.0007 -0.0455	0.0002	0.0003	0.0011 -0.0041	
μ _h	-8.2450	0.1763	-8.4793	-8.0079	ω	45.9 x 10 ⁻⁷				
$\phi_h \sigma_h^2$	0.9825	0.0051	0.9738	0.9902	α	0.1299	0.0173	0.0960	0.1637	
σ _h	0.0123	0.0021	0.0093	0.0160	β	0.8496	0.0182	0.8139	0.8853	=> Parameters are quite
BELEX15										-
MASV	noctorior	noctorior			GARCH(1,1), Student-t	Errors			precisely estimated , with
parameter	posterior mean	stdev.	5%-tile	95%-tile	parameter	mean	stdev	5%-tile	95%-tile	low standard deviation and
μ	0.0001 -8.2886	0.0004 0.8414	0.0000	0.0007 -8.0869	μ	0.0000	0.0002	0.9996	1.0004	
μ _h Φ _h	-0.2000	0.8414	-8.6346 0.9716	-8.0869	AR(1)	0.2135	0.0214	0.1715	0.2555	narrow confidence interval
σ_{h}^{2}	0.0139	0.0027	0.0100	0.0189	ω α	63 x 10 ⁻⁷ 1 0.2436	3.2 x 10 ⁻⁷ 0.0328	37 x 10 ⁻⁷ 8 0.1833	88.5 x 10'' 0.3120	
ψ	0.2067	0.0269	0.1623	0.2500	β	0.7541	0.0218	0.7116	0.7968	
BUX										
sv					GARCH(1,1). GED				=> the Romanian BET
parameter	posterior	posterior	5%-tile	95%-tile	parameter	mean	stdev	5%-tile	95%-tile	
•	<u>mean</u> 0.0004	<u>stdev.</u> 0.0003	0.0001	0.0010	μ	0.0004	0.0002	0.9996	1.0005	index brings one of the
μ μ _h	-0.8023	0.2206	-8.2398	-7.8078	AR(2)	-0.0413	0.0205	-0.0815	-0.0012	highest returns (μ) among
Φ_h	0.9827	0.0052	0.9738	0.9905	ω α	47.4 x 10 ⁻⁷ 1 0.0936	13.1 x 10 ⁻⁷ 0.0132	21.7 x 10 ⁻⁷ 0.0678	73 x 10 ⁻⁷ 0.1195	
σ_{h}^{2}	0.0101	0.0018	0.0075	0.0134	β	0.8897	0.0151	0.8602	0.9193	the five indices considered,
WIG20) Otrada a 4	F			as modeled by both
SV	noctorior	noctorior			• •), Student-t	stdev	5%-tile	95%-tile	5
parameter	mean	posterior stdev.	5%-tile	95%-tile	parameter			0.0000	0.0010	GARCH and SV/MASV
μ	0.0004	0.0004	0.0001	0.0010	μ AR(2)	0.0005 -0.0417	0.0002 0.0218	-0.0844	-0.0009	
μ_h	-8.0144	0.6120	-8.2928	-7.8311		21.2 x 10 ⁻⁷		58.9 x 10 ⁻⁷	15.5 x 10 ⁻⁷	
Φ_{h_2}	0.9840	0.0054	0.9751	0.9923	α	0.0592	0.0093	0.0411	0.0774	
σ_{h}^{2}	0.0084	0.0015	0.0062	0.0110	β	0.9325	0.0104	0.9122	0.9530	of Finance and Banking

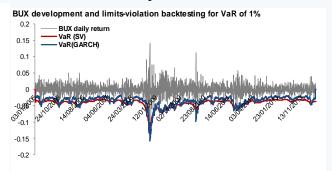

Conditional variance output

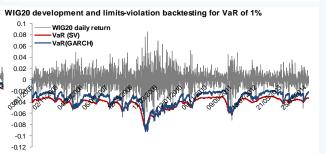

The use of past errors in modeling the volatility by GARCH models, induces higher conditional variance compared to the output from Stochastic Volatility models

GARCH vs. SV – backtesting volatility forecasts

VaR metric calculated by GARCH and Stochastic Volatility models







Source: Erste Fact Set, own computes

Source: Erste Fact Set, own computes

Source: Erste Fact Set, own computes

Index	Model	Limits-violations
Index	Model	(% of total sample)
BET	MASV	0.52%
DEI	GARCH(1,1) -t Student	1.98%
РХ	SV	0.39%
FA	GARCH(1,1) -t Student	1.89%
BELEX15	MASV	0.45%
DELENIS	GARCH(1,1) -t Student	1.31%
BUX	SV	0.60%
DUA	GARCH(1,1) -GED	1.55%
WIG20	SV	0.52%
WIG20	GARCH(1,1) -t Student	1.67%

Comparing method: testing the violation of the VaR limits given by the number of excesses outside the confidence interval

VaR <= normal distribution, 1% significance level, one-day-ahead volatility forecast

VaRs computed with <u>one-day-ahead</u> <u>volatility forecast</u> from SV/MASV had fewer violations than the ones calculated with the GARCH

GARCH vs. SV – out-of-sample volatility forecast (I)

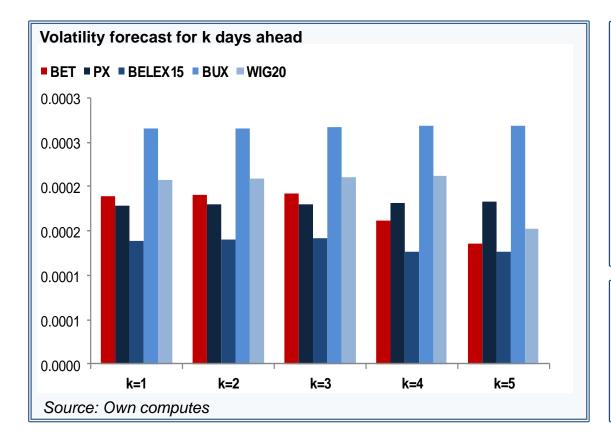
Out -of- sample horizon: February 2, 2014 – May 9, 2014 (66-68 observations)

Desc	Descriptive statistics for the indices' daily returns in-sample period											
Indicator -		Blu	ue-chips ind	ex								
	BET	PX	BELEX15	BUX	WIG20							
Mean	0.000328	0.000104	-0.000147	0.00025	0.00021							
Std. Dev.	0.017887	0.015557	0.014501	0.016984	0.015887							
Skew ness	-0.366821	-0.165442	1.32185	0.138133	-0.176609							
Kurtosis	9.64473	16.64321	26.41562	9.728508	5.768601							
Jarque-Bera	4232.578	18391.86	497977.01	4472.56	738.4192							
Source: own	computes											

Desc	Descriptive statistics for the indices' daily returns <u>out-of-sample period</u> Blue-chips index										
Indicator -	BET	PX	BELEX15	BUX	WIG20						
Mean	0.000427	0.000255	-0.000233	0.000233	0.000182						
Std. Dev.	0.008529	0.009102	0.004369	0.013859	0.011546						
Skew ness	-1.231324	-0.142936	0.9216328	0.3027	-0.851902						
Kurtosis	7.910103	14.344603	13.861707	3.778663	7.5488256						
Jarque-Bera	85.49229	94.992164	92.518022	62.675271	64.885601						
Source: own	computes										

GARCH vs. SV – out-of-sample volatility forecast (II)

Comparing method: minimum Mean Absolute Error (MAE), Mean Square
Error (MSE) and Heteroskedasticity-adjusted Mean Square Error (HMSE) $MAE = \frac{1}{m} \sum_{t=T-m}^{T} |RVt - FVt|$ RV = realized volatility $MSE = \frac{1}{m} \sum_{t=T-m}^{T} (RVt - FVt)^2$ = sum of 1-hour squared returns $HMSE = \frac{1}{m} \sum_{t=T-m}^{T} (1 - \frac{FVt}{RVt})^2$ FV = forecasted volatility (k days ahead)


Index	Indicator SV/	k days ahead								
	Indicator GARCH	k=1	k=2	k=3	k=4	k=5				
	MAE	0.525	0.505	0.503	1.044	1.062				
BET	MSE	0.624	0.640	0.645	1.061	1.070				
	HMSE	0.160	0.131	0.121	1.072	1.142				
	MAE	0.868	0.898	0.897	0.901	0.889				
PX	MSE	0.831	0.855	0.860	0.882	0.834				
	HMSE	0.826	0.988	0.875	0.953	0.950				
	MAE	0.784	0.817	0.791	1.049	1.068				
BELEX15	MSE	0.864	0.878	0.858	1.149	1.224				
	HMSE	0.895	1.036	0.912	1.088	1.006				
	MAE	0.768	0.762	0.760	0.753	0.757				
BUX	MSE	0.608	0.599	0.601	0.601	0.598				
	HMSE	0.887	0.856	0.901	0.887	0.822				
	MAE	0.647	0.046	0.066	0.288	1.853				
WIG20	MSE	0.900	0.001	0.002	0.004	1.139				
	HMSE	0.920	0.000	0.000	0.003	1.106				

For all the five indices, on the short run, Stochastic Volatility models outperform GARCH models in forecasting volatility

For BET, BELEX15 and WIG20, the GARCH seems to perform better in forecasting volatility for 4 to 5 days ahead

Volatility forecast results for CEE blue chips indices

Illustrative example: Using the parameters estimated for the state equation (in the case of stochastic volatility models) or for the volatility equation (for GARCH models), it can be ran volatility forecasts on a five-day horizon.

Giving the current context, the most volatile stock exchange in the coming five days seems to be Hungary's market. In the opposite corner are the Serbian market, the Czech one and the Romanian one.

The importance of such volatility forecasting results comes from their integration in larger volatility analysis.

Concluding remarks

- Stochastic Volatility models deliver better volatility forecasts than GARCH models on the short run (1-3 trading days ahead) for all the five indices considered
- GARCH outperforms the Stochastic Volatility model in the case of BET and BELEX15 for forecasting 4 and 5 days ahead volatility (the two indices are frontier market indices according to MSCI classification, which makes them more unpredictable on longer time frames), and in the case of WIG20 for forecasting 5 days ahead volatility (the mutation seen on the Polish capital market in September 2013 when the Polish state decided to partially nationalize pension funds, which ensured in 2013 almost 40% of the market liquidity, gave to the Polish capital market a higher-risk profile, translated into larger, unpredictable fluctuations).
- Further research: Testing the models on larger out-of-sample horizons
 - Applying the model for a stock (instead of an index) for which there are options in order to compute the implied volatility
 - Testing SV models for which the errors are not assumed to be Gaussian
 - -Testing SV models with conditional mean of returns

Selected references

[1] Berger, J., Pericchi, L., "The Intrinsic Bayes Factor for Model Selection and Prediction", Journal of the American Statistical Association, Vol. 91, p 109-122, 1996 [2] Bollerslev T., "Generalized Autoregressive Conditional Heteroskedasticity", "Journal of Econometrics", Vol. 31, p 307-328, 1986 [3] Chan C., Jeliazkov I., "Efficient Simulation and Integrated Likelihood Estimation in State Space Models", International Journal of Mathematical Modeling and Numerical Optimization, Vol. 1, p 101-120 [4] Chan C., "Moving Average Stochastic Volatility Models with Application to Inflation Forecast", Journal of Econometrics, Vol. 176, p 162-172, 2013 [5] Fleming J., Kirby C., "A Closer Look at the Relation between GARCH and Stochastic Autoregressive Volatility", Journal of Financial Econometrics, Vol. 1, p 365-419, 2003 [6] Galdi F.C. and Pereira L.M., "Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility", Brazilian Business Review, Vol. 4, p 74-94 [7] Hansen p., Lunde A., "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?", Journal of Applied Econometrics, Vol. 20, p. 873-889, 2001 [8] Kim S., Shepherd N., Chib S., "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models", review of Economic Studies, Vol. 65, p 361-393, 1998 [9] Verdinelli I., Wasserman L., "Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio", Journal of the American Statistical Association, Vol. 90, p 514-618, 1995