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”Many investors think volatility is the same thing as risk, but it’s not. 

Being risk-averse doesn’t mean avoiding volatility. Don’t fear the 

market’s gyrations. Volatility is the best friend of the unemotional, 

patient, debt-free investor. A wildly fluctuating market means that solid 

businesses will occasionally be available for you to buy at irrationally 

low prices.”  

Warren Buffett 

Foreword 
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Goals of the paper 

 

• To model and to forecast volatility using stochastic volatility 

models and GARCH models 

 

• To analyze comparatively the predictive ability of these models 

 

• To perform empirical exercises for five blue-chips indices from 

CEE capital markets, namely BET (Romania), BUX (Hungary), 

BELEX15 (Serbia), PX (Czech Republic) and WIG20 (Poland)  

 

• To derive conclusions on the specific volatility of each market 

and their particular features 
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Volatility in economics 

Definition: “Volatility is commonly allied to risk, in that it provides a  

measure of the possible variation or movement in a particular economic 

variable or some function of that variable.” 

Frank Knigh, “Risk, Uncertainty, and Profit”, 1921 

General 

volatility 

measures 

Standard deviation 
• measure of absolute volatility 

• shows how much an investment’s return 

varies from its average  return over time 

Beta 
• measure of relative volatility 

• indicates the price variance of  an investment 

compared to the market as a whole 

General approach: 

Higher expected returns can only occur with  correspondingly higher 

risk (Portfolio Selection Theory developed by  Markowitz and Capital 

Asset Pricing Model, developed by Sharpe) 
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Importance of volatility forecast 

• Volatility risk is considered as one of the prime and hidden risk 

factors on capital markets 

• Forecasting accurately future volatility is essential to 

 derivatives pricing 

 optimal asset allocation 

 portfolio risk management 

 dynamic hedging 

 input for Value-at-Risk  models 

• The importance of volatility forecasting was highlighted when 

in 2003 Professor R.F.  Engle was awarded the Noble prize for 

his contribution in modeling  volatility dynamics 
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Competing models 

Main class of models  that accommodate time-variation in variance: 

GARCH models: 
• Proposed by Bollerslev in 1986, based 

on the framework defined by Engle in 

1982 

• The conditional variance at time t is 

actually a function of three terms: i) the 

log-term average, ii) the news on past 

volatility measured by the ARCH term 

and iii) the previous conditional 

variance denoted by the GARCH term 

+ Very popular - Large moves reduce the 

forecasting performance 

(R. Reider, 2009) + Simple 

+ Fast - Parameters resulted using 

different time scales give 

inconsistent results 

(M. Caporin, 2011) 
+ Linear 

 

Stochastic Volatility models: 
• Introduced by Taylor in 1987 

• The variance at time t is given by 

an unobserved variable that 

evolves accordingly to an 

autoregressive process  

+ Better out-of 

sample 

forecasting 

performance 

(Kim, Shephard, 

Chib, 1998) 

- Less popular 

- More complicated 

- Non-linear 
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GARCH models 

General framework GARCH (p,q): 
 yt = µ+ Ɛt ,                                                                for t = 1, …T                                         (1) 
 Ɛt  = zt σt ,                       zt  ~ N (0,1 ,)                          for t = 1, …T                                                           (2) 

 σ2
t =  +  𝛼𝑖

𝑝
𝑖=1 Ɛ2

t-i + 𝑗
𝑞
𝑗=1  σ2

t-j ,             for t = 2, …T                                                             (3) 

Conditions: 
1. αi > 0 and j > 0 – ensures the positivity of the volatility process 

2.  αi
p
i=1  + j

q
j=1  < 1 – avoids explosive variance and makes (3) stationary 

Unconditional variance: var (Ɛt) = 


1− 𝛼𝑖
𝑝
𝑖=1  − 𝑗

𝑞
𝑗=1

 

Conditional variance: σ2
t 
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Alternative GARCH (p,q) models 

1. zt is Gaussian, f(zt) = 
𝟏

𝝈𝟐 
𝒆
−
(zt−µ)

𝟐

𝟐𝝈𝟐 , where µ is the mean and σ is the 

standard deviation of zt 

2.  zt follows a Student-t distribution, f(zt) = 
 𝚪(+𝟏

𝟐
)

 𝚪(
𝟐
)
 (1+ 

𝐭𝟐


) −
+𝟏

𝟐 , where  is the         

number of degrees of freedom 

3. zt follows a GED, f(zt) = 


𝟐𝛂𝚪(
𝟏


)
𝐞−(|zt−µ|/𝛂)


, where µ is the location, α is the 

scale and  is the shape 
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Standard Stochastic Volatility model (SV) 

General framework: 

 yt = µ + 𝑒
1

2
ℎ𝑡 Ɛt ,                                        Ɛt ~ N (0,1)                    for t = 1, …T                                   (4) 

 ht = µh + φh (ht-1 - µh) + ζt,             ζt ~ N (0,σ2
h)                 for t = 2, …T                         (5) 

Ɛt, ζt - i.i.d. 

Condition: 
| φh | < 1 – ensures that the AR(1) process in (5) is stationary 

Conditional variance: Var (yt / ht ) = eht 

Linearized framework: 
 yt * = ht  + Ɛt *, Ɛt *|st ~ N (µst-1.2704, σ2st)                    for t = 1, …T                                   (6) 
 ht = µh + φh (ht-1 - µh) + ζt,             ζt ~ N (0,σ2

h)                for t = 2, …T                         (7) 
yt

* = log((yt - µ) 
2+c), Ɛt

* = log Ɛt
2, st  {1, 2, 3, 4, 5, 6, 7} 

Ɛt *~ log-χ2(1), but It can be estimated using a seven-component Gaussian mixture (Kim, Shepherd, 
Chib,1998) 
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Moving Average Stochastic Volatility Model (MASV) 

General framework: 
 yt = µ + ut,                                                                     for t = 1, …T                         (8) 
 ut  = Ɛt  + 1 Ɛt-1  + …+ q Ɛt-q,        Ɛt  ~ N (0,𝑒ℎ𝑡)            for t = 1, …T                         (9) 
 ht = µh + φh (ht-1 - µh) + ζt,                 ζt ~ N (0,σ2

h)             for t = 2, …T                                   (10) 
Ɛt, ζt - i.i.d. 

SV and MASV are nested: for 1 = 2 = …= q = 0, MASV turns into SV 

Conditions: 
1. | φh | < 1 – ensures that the AR(1) process in (10) is stationary 

2. p <1, p =1, 𝑞  – makes the MA(q)  process in (9) invertible 

Conditional variance: Var (yt |µ, , h) = 𝑒ℎ𝑡 + 1
2 𝑒ℎ𝑡−1 + … +q

2 𝑒ℎ𝑡−𝑞 

Conditional covariance:Cov(yt,yt-j|µ,,h)= 
 𝑒ℎ𝑡−𝑖𝑖+𝑗

 
i
 , j = 1,… , q 

𝑞−𝑗
𝑖=0

0                     , j > q 
,  

 = (1,…, q)’, h = (h1,…, hT) ’ 

11 
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Estimation of the Stochastic Volatility Models 

Independent priors: p(µ, , µh, φh, σ2
h) = p(µ) p() p(µh) p(φh) p(σ2

h) 
 ~ N (0, V) 1(||<1)                                   φh ~ N (φh0, Vφh) 1(|φh|<1) 
µ ~ N (µ0, Vµ)                                                      σ2

h ~ IG (νh, Sh) 
µh ~ N (µh0, Vµh) 

Initialization of the state: h1 ~ N(µh, σ
2

h /(1- φ2
h)) 

Bayesian analysis: 

p(h, µ, , µh, φh, σ
2

h|y)  = p(y|h, µ, , µh, φh, σ
2

h) p(h, µ, , µh, φh, σ
2

h) 
 
  Joint posterior distribution          Likelihood function 

p(h, µ, , µh, φh, σ
2

h|y) =   1. p(µ | y, h, , µh, φh, σ
2

h) = p(µ | y, h, ); 
                                               2. p(h | y, µ, , µh, φh, σ

2
h); 

               Gibbs                      3. p( | y, h, µ, µh, φh, σ
2

h) = p( | y, h, µ); 
              sampler                   4. p(µh | y, h, µ, , φh, σ

2
h) = p(µh | h, φh, σ

2
h); 

                                               5. p(φh | y, h, µ, , µh, σ2
h) = p(φh | h, µh, σ2

h); 
                                               6. p(σ2

h | y, h, µ, , µh, φh) = p(σ2
h | h, µh, φh) 
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Evaluating the likelihood function 

ut  = Ɛt  + 1 Ɛt-1  + …+ q Ɛt-q,  Ɛt  ~ N (0,𝑒ℎ𝑡)    =>    u = H Ɛ                             (11) 

H = 

1 0 ⋯ 0
1 1 ⋮ 0
2 1 ⋮ 0
⋮ 2 ⋮ 0
𝑞 ⋮ ⋮ 0

0 𝑞 ⋮ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

,            | H | = 1                 

u  ~ N (0, Sy) 
Sy = H Sy H’,             Sy = diag(𝑒ℎ1 , … , 𝑒ℎ𝑇 ),        | Sy | = | Sy | = exp {  ℎ𝑡

𝑇
𝑡=1  }  

(y | µ, , h) ~ N (µ1, Sy) 
 

log p(y | µ, , h) = - 
T

2
 log(2) - 

1

2
  ℎ𝑡

𝑇
𝑡=1 - 

1

2
 (y - µ1)’ Sy

-1 (y - µ1) 

13 
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Sampling the state 

p(h|y, µ, , µh, φh, σ
2

h)  p(y|h, µ, ) p(h|µh, φh, σ
2

h) = p(y*|h, s, ) p(h|µh, φh, σ
2

h) 
 
                1.                     2. 

1. ln p(y*|h, s, ) = - 
1

2
 (y*- h – d)’ Sy*

-1 ( y*- h - d) +c1, 

d=(µs1–1.2704,…, µsT–1.2704)’, Sy*=diag(σ2
s1,..,σ2

sT) 
 
 

2. log p(h|µh, φh, σ
2

h) = - 
1

2
(h - H φh

-1 𝜶 )’ H φh
’ Sh

-1 H φh (h - H φh
-1 𝜶 )  + c2 

Sh=diag(σ2
h/(1- ϕ2

h), σ2
h,…, σ2

h), 𝜶  = 

µh

(1 −  ϕh)µh

⋮
(1 −  ϕh)µh

, Hϕh = 

1 0 0 ⋯ 0
− ϕh 1 0 ⋯ 0
0 − ϕh 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 − ϕh 1

. 

log p(h|y, µ, , µh, φh, σ
2

h) = - 
1

2
(h’𝐊𝐡

  h – 2h 𝐊𝐡
  𝐡  ) + c3, 

𝐊𝐡
  = Hφh

’ Sh
-1 Hφh +Sy*

-1 and 𝐡  = 𝐊𝐡
−𝟏 (H φh

’ Sh
-1 𝜶  +  Sy*

-1 ( y* - d)) 
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Data description 

yt  = Daily returns of blue-chips indices from CEE  stock exchanges 
     = Indext/Indext-1 -1 

BET Bucharest Stock Exchange 10 Jan 3, 2005 – May 9, 2014 2,341 BSE

PX Prague Stock Exchange 14 Jan 3, 2005 – May 9, 2014 2,436 Erste Equity Research Fact Set

BELEX15 Belgrad Stock Exchange 15 Oct 5, 2005 – May 9, 2014 2,216 Erste Equity Research Fact Set

BUX Budapest Stock Exchange up to 25 Jan 3, 2005 – May 9, 2014 2,433 Erste Equity Research Fact Set

WIG20 Warsaw  Stock Exchange 20 Jan 3, 2005 – May 9, 2014 2,341 Erste Equity Research Fact Set

Stock exchange

No. of 

stocks 

aggregated

Period No. of 

observations

SourceIndex

15 

Descriptive statistics for the indices' returns time series

BET PX BELEX15 BUX WIG20

Mean 0.000331 0.000108 0.999864 0.000228 0.000209

Maximum 0.111427 0.131609 0.18912 0.140854 0.084966

Minimum -0.122929 -0.149435 -0.102923 -0.118817 -0.080962

Std. Dev. 0.017684 0.015417 0.014748 0.016905 0.015779

Skew ness -0.372859 -0.165682 1.334625 0.142016 -0.184303

Kurtosis 9.813614 16.0382 27.07185 9.685639 5.819956

Jarque-Bera 4582.647 19351.51 54160.79 4542.126 788.919

Source: own computes

Indicator Blue-chips index
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Data features – Normal density test 

Empirical density of daily returns vs. the normal density Q-Q plots for indices’ daily returns 

Source: Own computes (E-Views output) Source: Own computes (E-Views output) 

Positive excess kurtosis confirms the usual leptokurtic distributions of stock 

prices’ returns 
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Data features – Heteroskedasticity 
Daily returns development for CEE blue-chips indices 

Time series do not have constant variance over time => the need of modeling 

the data in a time-varying framework 

BET index daily returns Jan 2005 - May 2014

Source: Bucharest Stock Exchange, own computes
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PX index daily returns  Jan 2005 - May 2014

Source: Erste Equity Research Fact Set, own computes

-20%
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BELEX 15 index daily returns Jan 2005 - May 2014

Source: Erste Equity Research Fact Set, own computes
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BUX index daily returns  Jan 2005 - May 2014

Source: Erste Equity Research Fact Set, own computes
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WIG 20 index daily returns Jan 2005 - May 2014

Source: Erste Equity Research Fact Set, own computes

-10%

-8%

-6%
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2%

4%

6%

8%

10%

Large volatility periods are roughly the same for all the five CEE markets 

considered (volatility clusters mostly overlap) 
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Data features – Serial independence test 

=>Up to lag 15 (at least), daily returns seem to be auto-correlated (confirmation 

of the volatility clustering phenomenon) 

=>Exception: WIG20 for which auto-correlation is confirmed only up to lag 5  

Autocorrelation coefficients of daily returns 

Source: Own computes (E-Views output) 
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Data features – Stationarity tests 

 

 
Augmented Dickey 

Fuller (ADF) and 

Kwiatokski-Phillips-

Schmidts-Shin Unit 

Root (KPSS) tests 

have opposite null 

hypothesis, which 

strengthens the 

result that all the 

five data series are 

stationary 

 

  

ADF and KPSS tests for stationarity 

Source: Own computes (E-Views output) 
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GARCH models comparison 
Hansen P., Lunde A. (2004) => there is no significant evidence that higher-order GARCH 

outperforms GARCH(1,1) model 

BET PX BELEX15 BUX WIG20

Gauss -5.703709 -6.009348 -6.188887 -5.617342 -5.687982

t-Student -5.751796 -6.052126 -6.374738 -5.641363 -5.707365

GED -5.746878 -6.047423 -6.367566 -5.646466 -5.706903

Gauss -5.691406 -5.997439 -6.176014 -5.605421 -5.675675

t-Student -5.737032 -6.037835 -6.359289 -5.627057 -5.692596

GED -5.732114 -6.033132 -6.352118 -5.63216 -5.692134

Gauss 6678.339 7318.377 6859.193 6832.88 6657.096

t-Student 6735.602 7371.438 7066.022 6863.076 6680.764

GED 6729.847 7365.714 7058.079 6869.2979 6680.224

GED error 

distribution

t-Student 

error 

distribution

Schw arz 

criterion

Log 

likelihood

t-Student 

error 

distribution

t-Student 

error 

distribution

t-Student 

error 

distribution

Blue-chips indexError distribution of 

GARCH (1,1)

Akaike info 

criterion 

Source: Own computes 

AIC = log(σ2) + 
𝟐𝐤

𝐓
 

k = no. of parameters 

T = no. of observations 

SBIC = log(σ2) + 
𝑘

𝑇
 log(T), 

k = no. of parameters 

T = no. of observations 

Lnorm=
𝟏

𝟐
 [𝐥𝐨𝐠 𝟐𝝅 + 𝐥𝐨𝐠(𝝈𝟐𝑻
𝒕=𝟏 ) + 𝒛𝟐],  𝐳𝟐 =

𝛆𝐭

𝛔𝐭
  

Lstud = T {log 𝚪(
+𝟏
𝟐
)-log 𝚪(


𝟐
)- 

𝟏

𝟐
𝒍𝒐𝒈[ − 𝟐 ]} − 

𝟏

𝟐
 [𝐥𝐨𝐠(𝝈𝟐𝑻
𝒕=𝟏 ) + (𝟏 + )𝒍𝒐𝒈(𝟏 +

𝒛

−𝟐
)],  = no. of degrees of freedom  

LGED =  [𝒍𝒐𝒈



− 𝟎. 𝟓 
𝒛


− 𝟏+ −𝟏 𝒍𝒐𝒈 𝟐 − 𝒍𝒐𝒈𝚪(

𝟏


)𝑻

𝒕=𝟏 − 𝟎. 𝟓 𝐥𝐨𝐠(𝝈𝟐)],  =  
Γ(

1

)2
−2


Γ(
3

)
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Stochastic Volatility models comparison 

SV and MASV (q=1) are nested models => if  = 0, MASV becomes SV  

Source: Own computes (Matlab output) 

BF = 
𝒑(=𝟎)

𝒑(=𝟎|𝒚)
 =

𝐚 𝐩𝐫𝐢𝐨𝐫𝐢 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐭𝐨 𝐡𝐚𝐯𝐞=𝟎

𝐚 𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫𝐢 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐭𝐨 𝐡𝐚𝐯𝐞=𝟎
 

BET                                                                                PX BELEX15 

BUX                                                                                  WIG20 

BF = 0.1090 BF = 195.6592 

BF = 0.0763 BF = 0.0423 

Estimate of p(|y) within the MASV model 

BET, BELEX 15 => MASV models 

PX, BUX, WIG20 => SV model 

21 
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Parameters of the models 
BET 

PX 

BELEX15 

BUX 

WIG20 

=> For all the five GARCH 

models, α +  is below 1, 

which means that there are 

no explosive phenomena in 

the framework 

=> Parameters are quite 

precisely estimated, with 

low standard deviation and 

narrow confidence interval 

=> the Romanian BET 

index brings one of the 

highest returns () among 

the five indices considered, 

as modeled by both 

GARCH and SV/MASV 

22 

MASV

parameter
posterior 

mean

posterior 

stdev.
5%-tile 95%-tile

µ 0.0007 0.0004 0.0001 0.0013

µh -7.7713 0.1142 -8.3034 -7.1386

φh 0.9878 0.0052 0.9794 0.9971

σ2h 0.0122 0.0024 0.0088 0.0168

ψ 0.0916 0.0266 0.0482 0.1348

GARCH(1,1), Student-t Errors

parameter mean stdev 5%-tile 95%-tile

µ 0.0006 0.0002 0.0001 0.0011

AR(1) 0.0806 0.0213 0.0387 0.1224

 53.5 x 10-7 12.5 x 10-7 28.9 x 10-7 78 x 10-7

α 0.1841 0.0215 0.1419 0.2263

 0.8125 0.0184 0.7765 0.8486

SV

parameter
posterior 

mean

posterior 

stdev.
5%-tile 95%-tile

µ 0.0005 0.0003 0.0001 0.0010

µh -8.2450 0.1763 -8.4793 -8.0079

φh 0.9825 0.0051 0.9738 0.9902

σ2h 0.0123 0.0021 0.0093 0.0160

GARCH(1,1), Student-t Errors

parameter mean stdev 5%-tile 95%-tile

µ 0.0007 0.0002 0.0003 0.0011

AR(2) -0.0455 0.0211 -0.0868 -0.0041

 45.9 x 10-7 11.4 x 10-7 23.7 x 10-7 8.2 x 10-7

α 0.1299 0.0173 0.0960 0.1637

 0.8496 0.0182 0.8139 0.8853

MASV

parameter
posterior 

mean

posterior 

stdev.
5%-tile 95%-tile

µ 0.0001 0.0004 0.0000 0.0007
µh -8.2886 0.8414 -8.6346 -8.0869

φh 0.9820 0.0062 0.9716 0.9915

σ2h 0.0139 0.0027 0.0100 0.0189

ψ 0.2067 0.0269 0.1623 0.2500

SV

parameter
posterior 

mean

posterior 

stdev.
5%-tile 95%-tile

µ 0.0004 0.0003 0.0001 0.0010

µh -0.8023 0.2206 -8.2398 -7.8078

φh 0.9827 0.0052 0.9738 0.9905

σ2h 0.0101 0.0018 0.0075 0.0134

GARCH(1,1), GED

parameter mean stdev 5%-tile 95%-tile

µ 0.0004 0.0002 0.9996 1.0005

AR(2) -0.0413 0.0205 -0.0815 -0.0012

 47.4 x 10-7 13.1 x 10-7 21.7 x 10-7 73 x 10-7

α 0.0936 0.0132 0.0678 0.1195

 0.8897 0.0151 0.8602 0.9193

SV

parameter
posterior 

mean

posterior 

stdev.
5%-tile 95%-tile

µ 0.0004 0.0004 0.0001 0.0010

µh -8.0144 0.6120 -8.2928 -7.8311

φh 0.9840 0.0054 0.9751 0.9923

σ2h 0.0084 0.0015 0.0062 0.0110

GARCH(1,1), Student-t Errors

parameter mean stdev 5%-tile 95%-tile

µ 0.0005 0.0002 0.0000 0.0010

AR(2) -0.0417 0.0218 -0.0844 -0.0009

 21.2 x 10-7 7.8 x 10-7 58.9 x 10-7 15.5 x 10-7

α 0.0592 0.0093 0.0411 0.0774

 0.9325 0.0104 0.9122 0.9530

GARCH(1,1), Student-t Errors

parameter mean stdev 5%-tile 95%-tile

µ 0.0000 0.0002 0.9996 1.0004

AR(1) 0.2135 0.0214 0.1715 0.2555

 63 x 10-7 13.2 x 10-7 37 x 10-7 88.5 x 10-7

α 0.2436 0.0328 0.1833 0.3120

 0.7541 0.0218 0.7116 0.7968
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Conditional variance output 

0.000

0.000

0.000

0.001

0.001

0.001

0.001

0.001

0.002

0.002

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

WIG20  GARCH(1,1) variance WIG20  SV variance

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BELEX15 GARCH(1,1) variance BELEX15 MASV variance

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0.004

0.005

0.005

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BUX GARCH(1,1) variance BUX SV variance

0.000

0.001

0.002

0.003

0.004

0.005

0.006

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

PX GARCH(1,1) variance PX SV variance

0.000

0.001

0.002

0.003

0.004

0.005

0.006

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BET GARCH(1,1) variance BET MASV variance

Variances modeled with stochastic volatility models and GARCH(1,1) models 

Source: Own computes  

The use of past 

errors in modeling 

the volatility by 

GARCH models, 

induces higher 

conditional 

variance 

compared to the 

output from 

Stochastic Volatility 

models 
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GARCH vs. SV – backtesting volatility forecasts 

Comparing 

method: testing the 

violation of the VaR 

limits given by the 

number of excesses 

outside the 

confidence interval 

VaR <= normal 

distribution, 1% 

significance level, 

one-day-ahead 

volatility forecast 

VaR metric calculated by GARCH and Stochastic Volatility models 
BET development and limits-violation backtesting for VaR of 1%

Source: BSE, own computes
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Source: Erste Fact Set, own computes
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Source: Erste Fact Set, own computes
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Index Model
Limits-violations 

(% of total sample)

MASV 0.52%

GARCH(1,1) -t Student 1.98%

SV 0.39%

GARCH(1,1) -t Student 1.89%

MASV 0.45%

GARCH(1,1) -t Student 1.31%

SV 0.60%

GARCH(1,1) -GED 1.55%

SV 0.52%

GARCH(1,1) -t Student 1.67%

BET

PX

BELEX15

BUX

WIG20

VaRs computed 

with one-day-ahead 

volatility forecast 

from SV/MASV had 

fewer violations 

than the ones 

calculated with the 

GARCH 
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GARCH vs. SV – out-of-sample volatility forecast (I) 

Out -of- sample horizon: February 2, 2014 – May 9, 2014 (66-68 observations)  

25 

BET PX BELEX15 BUX WIG20

Mean 0.000328 0.000104 -0.000147 0.00025 0.00021

Std. Dev. 0.017887 0.015557 0.014501 0.016984 0.015887

Skew ness -0.366821 -0.165442 1.32185 0.138133 -0.176609

Kurtosis 9.64473 16.64321 26.41562 9.728508 5.768601

Jarque-Bera 4232.578 18391.86 497977.01 4472.56 738.4192

Source: own computes

Indicator
Blue-chips index

Descriptive statistics for the indices' daily returns

in-sample period

BET PX BELEX15 BUX WIG20

Mean 0.000427 0.000255 -0.000233 0.000233 0.000182

Std. Dev. 0.008529 0.009102 0.004369 0.013859 0.011546

Skew ness -1.231324 -0.142936 0.9216328 0.3027 -0.851902

Kurtosis 7.910103 14.344603 13.861707 3.778663 7.5488256

Jarque-Bera 85.49229 94.992164 92.518022 62.675271 64.885601

Source: own computes

Indicator
Blue-chips index

Descriptive statistics for the indices' daily returns

out-of-sample period
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GARCH vs. SV – out-of-sample volatility forecast (II) 

Comparing method: minimum Mean Absolute Error (MAE), Mean Square 

Error (MSE) and Heteroskedasticity-adjusted Mean Square Error (HMSE) 

MAE=
𝟏

𝐦
 |𝐑𝐕𝐭 − 𝐅𝐕𝐭|𝐓
𝐭=𝐓−𝐦                         𝐑𝐕  = realized volatility 

MSE=
𝟏

𝐦
 (𝐑𝐕𝐭 − 𝐅𝐕𝐭)𝟐𝐓
𝐭=𝐓−𝐦                             = sum of 1-hour squared returns  

HMSE=
𝟏

𝐦
 (𝟏 −

𝐅𝐕𝐭

𝐑𝐕𝐭
)𝟐𝐓

𝐭=𝐓−𝐦                                F𝐕 = forecasted volatility (k days ahead) 

For all the five indices, on 

the short run, Stochastic 

Volatility models 

outperform GARCH models 

in forecasting volatility 

For BET, BELEX15 and 

WIG20, the GARCH seems 

to perform better in 

forecasting volatility for 4 

to 5 days ahead 
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k=1 k=2 k=3 k=4 k=5

MAE 0.525 0.505 0.503 1.044 1.062

MSE 0.624 0.640 0.645 1.061 1.070

HMSE 0.160 0.131 0.121 1.072 1.142

MAE 0.868 0.898 0.897 0.901 0.889

MSE 0.831 0.855 0.860 0.882 0.834

HMSE 0.826 0.988 0.875 0.953 0.950

MAE 0.784 0.817 0.791 1.049 1.068

MSE 0.864 0.878 0.858 1.149 1.224

HMSE 0.895 1.036 0.912 1.088 1.006

MAE 0.768 0.762 0.760 0.753 0.757

MSE 0.608 0.599 0.601 0.601 0.598

HMSE 0.887 0.856 0.901 0.887 0.822

MAE 0.647 0.046 0.066 0.288 1.853

MSE 0.900 0.001 0.002 0.004 1.139

HMSE 0.920 0.000 0.000 0.003 1.106

k days ahead

BUX

WIG20

PX

BELEX15

IndicatorSV/ 

Indicator GARCH
Index

BET
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Volatility forecast results for CEE blue chips indices 

Illustrative example: Using the parameters estimated for the state equation (in the case 

of stochastic volatility models) or for the volatility equation (for GARCH models), it can be 

ran volatility forecasts on a five-day horizon. 

Giving the current 

context, the most volatile 

stock exchange in the 

coming five days seems 

to be Hungary’s market. 

In the opposite corner 

are the Serbian market, 

the Czech one and the 

Romanian one.  
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BET PX BELEX15 BUX WIG20

Volatility forecast for k days ahead 

Source: Own computes  

The importance of such 

volatility forecasting 

results comes from their 

integration in larger 

volatility analysis.  
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Concluding remarks 

• Stochastic Volatility models deliver better volatility forecasts than GARCH 

models on the short run (1-3  trading days ahead) for all the five indices 

considered 

• GARCH outperforms the Stochastic Volatility model in the case of BET and 

BELEX15 for forecasting 4 and 5 days ahead volatility (the two indices are 

frontier market indices according to MSCI classification, which makes them 

more unpredictable on longer time frames), and in the case of WIG20 for 

forecasting 5 days ahead volatility (the mutation seen on the Polish capital 

market in September 2013 when the Polish state decided to partially 

nationalize pension funds, which ensured in 2013 almost 40% of the market 

liquidity, gave to the Polish capital market a higher-risk profile, translated 

into larger, unpredictable fluctuations). 

• Further research:  - Testing the models on larger out-of-sample horizons 

        - Applying the model for a stock (instead of an index) 

          for which there are options in order to compute the 

                       implied volatility 

        - Testing SV models for which the errors are not  

          assumed to be Gaussian 

        -Testing SV models with conditional mean of returns 
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